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CHAPTER I

INTRODUCTION

A. Background

The initial substantive interest in and contributions to water wave mechanics
can be traced back to more than a century ago, beginning with the analvsis of linear
wave theory by Airy in 1845. One of the main purposes of studying ocean waves is to
understand the interaction between waves and ocean structures, which are commonly
found in a variety of offshore, coastal, naval architecture, oceanographic and environ-
mental applications. For instance, to compute the waves loads on a slender offshore
structure using the Morison equation (Morison et al. 1950), one needs to know the

wave kinematics.
1 . .
f= é«CDleU — Upl{U = Up)ds + CypA(U — Uy)ds. (1.1}

For bigger size offshore structures, finite elernent methods (FEM) are usually applied
to compute the wave forces, which are numerical integrals of the wave pressure on

the elements. The pressure is computed by the Bernoulli equation

g% 1
FIVR Lt gn=C

which also requires the computation of the wave kinematics.

For regular waves, or periodic waves. the prediction of wave kinematics by the
fifth order Stokes wave theory or Dean’s Stream Function (1972) is satisfactory. How-
ever it is not by simple superposition of the individual waves that we can obtain the

wave kinematics of irregular waves. It 1s known that linear wave theory may over

The journal model is Journal of Fluid Mechanics.




predict the wave kinematics above the still water level {swl) under irregular ocean
waves. Based on linear wave theory, a range of empirical approximations have been
proposed to tune the near surface wave kinematics. But these approximations lack
theorstical grounds and may either under predict or over predict wave kinematics
under irregular ocean waves (Donelan et al. 1992).

The second order conventional perturbation solution, or called mode-coupling
method (MCM) (Longuet-Higgins 1962) is an improvement to linear and modified
linear wave theories. However, the conventional perturbation approach was developed
for narrow-band wave interactions. It may be divergent when the wavelengths of
the two interacting wave components are quite different (Zhang et al. 1993). The
phase modulation method (PMM) is a complementary solution to the divergence of
the MCM {Zhang et al. 1993). It directly describes the modulation of short wave
components by long wave components. A new nonlinear wave model, called the
hybrid wave model {HWM), employs both MCM and PMM to model the wave-wave
interactions of ocean waves. The HWM divides the spectrum into several wave bands
and computes the interactions of close-frequency wave components within the same
and neighboring wave bands by the MCM and interactions of relatively far-apart
wave components by the PMM. The unidirectional HWM proposed by Zhang et al.
(1996) was recently extended to allow directionality of ocean waves. The derivation
of the directional hybrid wave model (DHWM} using a multi-parameter pertulrbatiorz
technique is detailed in this research.

Based on the precise knowledge of wave kinematics provided by the HWM, wave
forces on slender offshore structures using the Morison Equation are computed. The
effects of surface Huctuation and wave nonlinearity are further investigated with the
HWXM. Hu et al. {1995} applied the second-order MCM to study the surface fuc-

tuation and wave nonlinear effects on single degree of freedom (SDOF) structures.




Thev found dramatic changes of near surface kinematics and wave forces at different
cutoff frequencies. Theyv argued that the changes were caused by the contribution
of the leading order short wave components. However, their arguments are incorrect
because the second-order MCM is divergent to compute the nonlinear wave-wave in-
teractions of a broad wave spectrum and hence the kinematics related wave forces

diverge as well.

B. Literature Review

The solution for two unidirectional wave components with close frequencies us-
ing the MCM was obtained by Longuet-Higgins (1962). The second-order solution
was ‘obtained using a perturbation approach and satisfied the nonlinear boundary
conditions by Taylor’s expansion at the swl. Zhang et al. (1993) proved that when
the wavelength ratio of short to long wave, £; becomes smaller than the long wave
steepness, the truncated solution of the MCM becomes divergent.

In contrast to the MCM, which describes the effects of wave-wave interaction in
terms of high order solutions, the PMM considers the consequence of the interaction
as the modulation of the short-wave component. The introduction of the PMM
overcame the divergence problem of the MCUM for interactions between long and short
wave that are of quite different wave lengths. Based on the unidirectional MCM and
PMM. the unidirectional HWM (UHWM) was developed (Zhang et al. 1996). For
spectral ocean waves, it divides the spectrum into several wave bands and model
the wave-wave interaction between free-wave components by the MCM and PMAM,
correspondingly: Le. interactions of close frequency free-wave components by the
MCM and shose of free~wave components relatively far-apart by the PMAM.

The UHWM was applied in the research of unidirectional irregular wave decom-




position and prediction (Zhang et al. 1996). Excellent agreements have heen found
between the prediction of the UHW A and experiment results (Spell et al. 1996}, The
HWAM was later developed to a directional wave model by using a multi-parameter
perturbation approach (Zhang et al. 1098). The DHWM is capable of computing
nonlinear wave-wave interaction of short-crested ocean waves and has been applied
in the research of deterministic decomposition and prediction of directional irregular
ccean waves (Zhang et al. 1998},

The prediction of wave kinematics under irregular waves has been the focus of
ocean wave research for manyv years. A range of prediction methods and theories
have been proposed. Besides the MCM, many empirical stretching and extrapolation
methods have been proposed based on linear wave theory. Wheeler (1969) proposed
a stretching method that has been recommended for offshore engineering practice
{APT 1993). But Wheeler stretching may under predict the kinematics above the swl
(Donelan et al. 1992). Laboratory and field data has shown that these coordinate
stretching methods may either consistently under predict or over predict the wave
kinematics above swl{ Donelan et al. 1992; Zhang et al. 1996). The predictive po-
tential and comparative performance of these methods need more detailed evaluation
(Sobey 1990).

Wave forces on slender structures are usually computed using the Morison equa-
tion because the diffraction effect of the structures is negligible (Sarpkayé 1981).
Accurate estimation of the wave forces computed by the Morison equation requires
precise knowledge of the wave kinematics. For relatively strong nonlinear waves,
nonlinear wave models are usually applied to obtain more sccurate wave kinematics.
‘Total wave forces are the integrations of the segmental wave forces along the strue-
ture. The consideration of the fluctuating surface elevation, which is referred to as

the wave intermittency, 1s also important in the computation of the wave forces. Tung




et al. {1991) studied the effects of free surface fluctuation on structure wave loads.
It was concluded that for sinusoidat waves the free surface fluctuation has important
effects on wave fields and force especially in the vicinity of the swl. Hu et al. {1803)
applied the MCM to study the effects of surface fluctuation and wave nonlinearity on
wave loads under irregular wave conditions. It was concluded that the effects were
both crucial under relatively steep waves and neglecting either of them will severely
underestimate the wave forces on the structure. It was also found that the prediction
of wave forces was very sensitive to the cutoff frequency of the spectrum and the
inclusion of high frequency wave components greatly increased the wave loads under
steep wave conditions. However, it is the divergence of the MCM that caused the
sensitivity to the cutoff frequency and exaggerated the effects of wave nonlinearity
and intermittency on wave forces. Using the HWM, we investigated the effects of
surface intermittency and wave nonlinearity on SDOFE structure wave loads under
irregular wave conditions. Important conclusions of the nonlinear effects on the wave
forces are given based on analysis and the numerical results. The determination of
the cutoff frequency in the design practice is also discussed.

API (1993) proposed Wheeler stretching method to compute wave forces on slen-
der bodies under irregular ocean waves. In this thesis, we will compare the prediction
of wave forces on SDOF structures by the HWM and the API approach under strong

nonlinear waves. Important conclusions based on the comparison are given.

C. Objectives

Main objective of this research is to introduce the DHWM and its applications
in the aspect of ocean engineering. Specific objectives include

{1) To introduce the HWM. The HWM includes both of the MCM and PMM,




which are derived by a single- and multi-parameter perturbation technique respec-
tively.

{2} To apply the HWM to predict the wave kinematics under irregular oceans
and compare the predictions by the MCM and PMM.

(37 To compute wave forces on SDOF structures using the Morison equation
based on the HWM. To investigate the effects of surface intermittency and wave
nonlinearity on wave loads and compare the predictions between linear and linear
stretching methods.  Give important conclusions of the nonlinear effects on wave

forces. Propose a cutoff frequency in the offshore design practice.
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CHAPTER II

HYBRID WAVE MODEL
For an imcompressible and irrotational free surface flow, the governing equation

and boundary conditions can be written as

Vi =0, ~h<z<y (2.1)
a9 1. ‘
5 T3 Vel =0, at z =7 (2.2)

on 00 dn dbon 0P

*5;4‘“5;5;‘1"‘53;8?!—62: at z =7), (23)
od
Fr 0, at z = —h, (2.4;

where ¢ is the velocity potential, 5 the surface elevation, ¢ time, g the gravitational
acceleration and h the water depth which is assumed to be uniform in this study.
The z-axis is set at the calm water level, the y-axis is orthogonal to the z-axis in the
horizontal plane, and the z-axis is pointing upwards. j is the Bernoulli constant
which will be chosen to ensure that z = 0 is located at the still water level.

The conventional mode coupling method (MCM) (Longuet-Higgins 1962) may
render the truncated solutions for the wave—wave interaction problem in the order of
wave steepness, defined as the product of the wave number and amplitude. When
the ratio of the short-wavelength to that of the long wave, &, is of O(1), the MCM
converges very quickly. However, when =, is small and approaches the long-wave
steepress £, the truncated solution converges slowly and eventually diverges (Zhang
et al. 1993).

The phase modulation method (PMM) proposed by Zhang et al. {1993) is a
complementary solution to the the MCM. It considers the consequence of wave inter-

actions as the modulation of the short wave and describes it directly in the solution for




the short-wave component. The PMM has been proven to be identical to the MCM
approach when z; <z, < 0.5, However, as £; gets bigger and eventually greater than
z;, the MCM solution diverges, while the PMM is convergent. But, when £, > 0.5,
the PMM can not accurately predict the slowly varying interaction between the two
wave components at third order in wave steepness (Zhang et al. 1993).

The HWM combines the MCM with the PMM to solve for the wave-wave inter-
actions of broad-band spectral waves. The model employs the MCM for interactions
between wave components, which are close in the frequency domain and the PMM

for short-long waves that are relatively far apart in the frequency domain.

A 'Mode Coupling Method

Longuet-Higgins (1962) gave a typical conventional perturbation solution and
derived the solution up to second order in wave steepness. A third order approxi-
mation for two deep water short crested waves using the same approach was later
given by Hsu {1979). The solution of the velocity potential of the interaction between
two directional waves of intermediate water depth can be obtained using the same

approach.

The potential function and surface elevation are expanded as

d =M L@ £ 200 " (2.5a)

=t eyt 2y (2.5b)

where = is the wave steepness.
Substituting Equation {2.5a} and (2.5b} into Equations (2.1) - (2.4), the following

leading order equations are obtained.

VI =,

o
o
o

pas—_




0o

5 T gt =0, at =0, (2.7
Al Gl
agf -5 =0 at z=0, (2.8)
At .
5o = {, at z = —h. (2.9}

Eliminating n'¥ from Equation (2.7), (2.8) gives

P20 9ph
G 97,

=0, at z=0 (2.10)

As a solution for these equations, we select the first-order solution corresponding to
two progressive directional surface waves of wave-number vector ky and k.

ayg cosh(ky (z + h)] azg coshlko(z + h)]

M = sin iné,, 2.1
wy  cosh{k h) s wo  cosh(koh) S, (211)
where for short writing , the phase 6; is defined as
gixki'}(—‘wit‘*}‘ﬁi, ?ml,2 (212)

The wave number vector points to the propagation direction and horizontal vector x
is defined as,
k = k;i+ kyj = kcos3i+ ksin gj, (2.13)
x = zi+ yj. (2.14)

9; and J; are the initial phase and directional angle for the ith wave comeonent

respectively . The linear dispersion relationship is given by,

b
P

e

[
T,

wi = gkitanh{kh) i = 1,2,
The corresponding first order surface elevation is

0 = q, cos 8y + as cos by, (2.16)
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Proceeding to the second order approximation, we have to satisfy the following equa-

t1ons

vieH =0, (2.17)
.@{2} 1 (? Ij{l}
(9{% + ~3V(I>””” + 1) Bt =, al z=10, (2.18)

an® a@f’i“a@% 0o 9y 99 | g

gt Oz Ox N dy Oy dz T Th

@
6?} = (], at z = —h. {2.20)
Jz

=0, at z=0,(2.19)

Eliminating n'® from Equation (2.18) and (2.19), we get

POD  9e® ) (e g0 ‘
o T = V) g (T e ) et 2 =022y

The second order solution can be satisfied by

3 ajw cosh[2k, (= + h)] 3 aguwy cosh[2ky (2 + h)]

o == ) in{26
8T s ey o) F gy Sn(2)
) Qoly COSh“k]_ - kz,(Z -+ h)] .
A g; —
* 2 () cosh{|ky — kalh) sin(0y = 62)
a1Qaws cosh[lk; + kai(z + )]
Ay B, + 6 2.
+ 2 (+) cosh(tky + kalh) sin(6) +62), (2.22)
where
ko[20{1 = M{T 1 F A el -1 +al-1
Ay = F o[20(1 F 2( o £ 1) F Maf — 1) +aj ~ 1] {2.23a)
f»g(l ?)\ “Q}Ikl I{:kgitanh(lkl :szlh) :
A ==1 (2.23b)
[
o =cothlkhy, 1= 1,2, (2.23c)

D =cos{3 — ). (2.23d)




11

The solution of n*?/ can be obtained from Equation {2.18).

¢y 01t [, 3cosh(2hh) 1 o5 20
77" P e - - e - 5 R
/ 4g I_ sirﬁ;‘ii_ﬁc;h} sinh”(kh) '
2wl | 3cosh(2h:R)
X {1;»{»2 . (031;— 2 } e
. 2+ ; - cos 28
T4 [ sinh® (k2h) smhz{fcth ?
k ;
+ HEERRL L N A + M cos(8) — 0y)
b DO AL+ M cos(8) + 6y), 2.94a
S (+) + M
where
My = A+ 1= ATz £ 1), (2.24b)

The Bernoulli constant, which is introduced to set the mean water level at z = 0, can

be shown as
? (J,?k’g 1
Co = Z 2 sinh2kh’ (

fzm

2.95)

Based on the velocity potential function, we can obtain the hydrodynamic pres-
sure head, velocity and acceleration components up to the second-order. The formu-
lations are given in Appendix A.

In an ocean wave flield, there are many free-wave components. The present
solutions for hydrodynamic pressure head, velocity and acceleration can be easily
extended to multi-component interactions by superposing the interactions among all
the wave components.

When two waves are propagating unidirectionally, we have 5, = 0 and 3, =
0. Thus the multi-directional solutions reduce to unidirectional solutions. It can
be showed that the simplified solutions are exactly the same as the unidirectional

solutions given by Zhang et al. (1993}




B.  Phase Modulation Method

{n the case of unidirectional waves, it is found that the truncated solution for
the interaction between a short-wave and a long-wave component by the MCM may
not converge, if £y > 2, (Zhang et al. 1993}, The convergence difficulty of the MCM
can be overcome through the use of the PMM (Zhang et al. 1993). The PMM was
extended to allow for directional wave interactions in deep water by Hong (1993).
Hong’'s derivation revealed the structure of the solutions for modulated short-wave by
a directional long wave. However, his derivation is lengthy, starting in the conformal
mapping coordinates and then mapping the solution back to that in Cartesian coor-
dinates. To simplify Hong’s derivation, a new modulation perturbation scheme was
developed, which directly derives the solution for the modulated directional short-
wave component in the Cartesian coordinates (Zhang et al. 1998). The present
solution was also extended to allow for intermediate-water depth with respect to the
long-wave component. The derivation is described below.

In contrast to the MCM approach, which describes the effects of wave-wave inter-
actions in terms of high order solutions and interprets them as bound waves or forced
waves, the phase modulation approach considers the consequence of wave interac-
tions as the modulation of the short-wave component. Therefore the PMM describes
it directly in the solution for the short-wave component. For a directional deep-
water short-wave component modulated by an intermediate water-depth long-wave
component. we explicitly formulate the modulation in the solutions for the short-wave
potential and elevation according to the features discovered by Hong (1993). We then
determine the solutions by using the governing equation and boundary conditions.

The total potential and surface elevation can be expressed as a superposition of
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the potentials and elevations of a short-wave and a long-wave components,

@ =Py + Py, (2.26)
=Tt s, (22?)

where the subscripts 1 and 3 stand for the long-wave and short-wave components,
respectively.

The governing equation and boundary conditions for ¢ are the same as (2.1)~
(2.4) except that the bottom boundary condition for the short-wave component is

changed to
Vo — 0 as z — —h, (2.28)

v

because the water depth is deep with respect to the short-wave component.

The effect of the interactions on the long-wave component is known to be at most
of third-order in wave steepness (Zhang et al. 1993; Hong 1993). Hence, the solu-
tion for the long-wave component up to second-order is the same as a single Stokes
wave train. By expanding the free surface boundary conditions at the undisturbed
long-wave surface and subtracting the undisturbed long-wave surface boundary con-
ditions, we obtain the governing equation and boundary conditions for the short-wave

component, correct to the second order in wave steepnesses,

V2<I>3:: O¢ -] <z <. ' (229)
dds 632@1
e Vo, Vo. n
ot + gt 1 g e T &,
Loy o 00 -
+5IV B + oy = 0 at z =1, (2.30)
dne O
ﬁ“éﬁ? - féf*?“vh@i Vi + Vb - Vi
F* Fp.
. 5}7 1 vhq)E Viﬁ}a 57 23773 = {J at z == 1, {231)

Vs 0 as z —» —h, (2.32)
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where ¥V, is the horizontal gradient operator. The last two terms on the left-hand-
sides of (2.30) and {2.31} are of second order and describe the interaction of the short-
wave component with itself. Thus, theyv only contribute to the second harmonic of
the short-wave component and consequently can be ignored in the derivation of the
modulations of the first harmonic of the short-wave component. The remaining non-
linear terms in {2.30) and (2.31) represent the interaction between the long-wave and
short-wave components. Because the second harmonic of the short-wave component
is of the second-order, the modulational effects on the second harmonic are of the
third-order. The solution for the second harmonic of short-wave component up to
second order is the same as a single Stokes wave and its derivation is omitted here
for brevity.

From Hong's study (1993), we anticipate that the modulated short-wave compo-

nent potential and elevation can be expressed as,

By = Agfae*rsin by, (2.33)
s = az(1 + =,bcos ) cos b, (2.34)
where
fa=1+g17rcosth, {2.35a)
J -
fe =2z ~aycosf +z21zc086, Z’:fj(k';z_}], (2.35b)
FESH
. J41 _
Oy = kapx + kyyy — wat -+ 05 + kza, sin by Z pilkiz), (2.35¢)
FEzit
By = ka7 + Kayy — wat + o3 -+ ks ppsin gy + Asysin (2.35d)

A is the average potential amplitude of the short-wave component, fi represents

the modulation of the potential amplitude, fi denotes the effects of the changes of




the short wavenumber and the relative still water level (swl) due to the presence of
the long-wave component. 6, and 9:3 are the modulated phases for the modulated
velocity potential and surface elevation, respectivelv. Theyv are modeled as the sum
of the corresponding linear phase and the modulation by the long-wave component, &
stands for the modulation of the elevation amplitude and A is the phase shift between
the elevation phase and the potential phase at the free surface. The parameters, p,
~, 7 and b, can be further expanded in terms of the frequency ratio of the long-wave

to the short-wave component, A,

AT+13~25 2J 23 2J 24
pi= Y N, = 9 A, 7= AT, b= 3 Ath,, (2.36)
n=0 n=x() i =0

where the summation is set to be zero if its upper limit is negative.

Since the phase modulation approach is intended to describe the interactions
between short-wave and long-wave components with quite different wavelengths, A is
expected to be relatively small. Generally speaking, it is smaller than 0.5. Theoreti-
cally, the summations in {2.35b), {2.35¢) and (2.36) can be extended to infinity. But
in reality theyv have to be truncated at a finite order. Equations {2.35b) and {2.35¢)
involve double summations and the series in both summations converge if A & 1,
because the magnitude of &z also depends on A. Therefore, to achieve an accuracy
at certain order of A for the sclutions of the potential and elevation, the truncations
of the summations in (2.35b), (2.35¢) and (2.36), have to be made consistently. For
examnple, the truncation of p; in (2.36) depends on the subscripts j and the trunca-
tion integer J in the summations of (2.35b} and (2.35¢). The reasons are elaborated
bejow.

To ensure the value of the short-wave potential to be nontrivial, the absolute
value of its exponential index &3z can not be too large. ie. the index should be of

O(1). Because of k1/k3 = a; A?, we have lk;z] ~ O{e A%, Furthermore, because the
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water depth is intermediate with respect to the long-wave component, o, ~ O{1}.
Hence, [kiz| ~ O(A?) and {(k2) ~ O(A¥]). If p; is truncated at 2(J + 1) — 24, then
pye1 should be truncated at 2(.J + 1) - 2{j +1). As a result, p;{k, 2)7 and P+ (kyzy
are accurate up to the same order of A, i.e. O(A*Y*U). Likewise, the truncation
in ; should be made accordingly. Since 7 and & only involve a single summation,
to achieve the same accuracy their summations in {2.36) are truncated at 2.J. Asa
result, the truncated solutions for the short-wave potential and elevation are accurate

ap to Og, A%

Substituting (2.33} into the Laplace equation (2.29), we obtain
Vi®; = EeF/v sin 3 cos 0,2, k% + Feb*Jr cos Gy sin 62, k2 = 0, (2.37)
and the coefficients E and F are given by

J J
E =-Aoir - QFij(klz)j + X1~ Z“/j(klz)ﬁl]

7=0 7=0
J J-1
+2> (7 + Dylkiz)? + Moy Z (7 + 16 + 201 (kr2), (2.38a)
= jord
J . - J .
F EWQAQ(}]FT “+ 211[1 - Z “fj(k13)3+1! e /\2&1 Z pj(klf':)‘?
23 (k)T Non 30 55 + U (kiz) 7, (2.38b)
=1 Fmzl

where I was defined in (2.23d). Splitting (2.37) with respect to sinf; and cos 05, we
have ' = F = (, which can be satisfied by further letting all coefficients of the terms,

{kiz)™, be zero. For £ = 0. we get the following equations.

O(1y 0 —2Tpg — Mar + 3oy 4+ 2v + 20 %0+, = 0. {2.3%a)

L 2 t 1 % j . /
3 5 2 . 5

O(kinzm) : “‘ZFﬂm - /\_Qiﬂfm—i + 2(??2' + 1)%Ym

+ e (m 4 1 (m + 27 =0, m=1,2,--- (2.39b}
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Similarly, for = 0,

O(1) 0 2T = 2030y 7T — Mapo + 20y + 23 %000y = 0, {2.40a)
O{;'”?Zm} : “2?’}‘,,2_§ - }\zalpm + 2(?71' + ljpm+‘;

+X a0y (m + D{m + 2)pmas = 0, m=12-- (2.40b)

Equations {2.39) and {2.40) can be further expanded in terms of A. From {2.39a), we

obtain the following hierarchy equations

O(1): =20 pog + 27790 = 0, (2.41a)
O(A) 2 —2Tpor + 27,1 = 0, (2.41b)
O(A%) : —2T pga + ooy + 2792 + 200710 = 0, (2.41c)
O(N%) 1 —2Tpg3 + 293 + 207791 = 0, (2.41d)
O{N) 0 =20pyp + 2900 ~ OTn_g + 200102 = 0, n>4.  (24le)

Similarly, (2.39b) can be expanded as, form = 1,2,---,

O(1): =2 ppp + 2(m + 1}ymo = 0, (2.428a)
O(A): =20 pp1 +2(m+ 1)y = 0, (2.42b)
O(A") 1 =20 pmn — @1 ¥m-1n-2 + 2(m + Vv

+(m + 1)(m -+ 2)&17m+},n_2 = {}, n > 2. (2—128)
In the same way, {2.40a) is further expanded as

O(1}: Zpe +20 =0, (2.43a}

()()\n) : Qﬁin - QCYETn,ng ~ 1 Pon-2 + Qiﬁf]ﬂg)nmg = {}, 7 2. {243(?}
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and so does {2.40b) form = 1,2,

O =210+ 2{m + 1)ppmern = 0, {2.44da)
O{)\) : WEI"?',;;WLE + 2(m + 1me+1?; = U (2*—1»&))

O(/\n} : '“2?'}’771*"1??1 ™ Xy Pn-2 + 2{}"{2 -+ l)pmw}—leﬂ

+{m + 1 (m+ 2)o posg -2 = 0, n> 2. {2.44¢)

The simultaneous equations (2.41)-(2.44) can be used to express all coefficients
of p; and «, in terms of polpoe. por. - s Pon). and 7{my, T, 72, - -, Tn). Later, it will
be shown that the coeflicients pp and 7 can be determined using the free-surface
boundary conditions. Thus, the solution for the potential can be obtained. The
procedures of expressing the coefficients of p; and -; in terms of gy and 7 are detailed
below.

To facilitate the description of the procedures, the coefficients p;; and +,; are
described as the elements of the matrices p and -y, respectively, as in (2.45), where
1 and j are the row and column numbers of the element, respectively. The ith row
elements in p and - matrices belong to the coefficients p; and +;, respectively, as

shown in (2.36). The description is divided in two parts,

(Poo Por oz oo Pon (Yoo Yor Yo2 ... TYon )
pic Pt P --- 0 Pin Yo Yir iz oo Vi
{p} =1 pwe pu P2 - Pt {YF=1v0 v v oo e | (245)
Pns Pat Pnrz - - Pan Taty Try TRl - Fan

{a} Noticing that the solutions for pys and py; are explicitly given by {2.43a) and
(2.43b]), the solutions for all elements in the first two columns (5 = 0 and 1) of the

matrices p and v can be expressed in terms of pyg or pg; (which are the elements of
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po) explicitly by solving the simultanecus equations {2.41a), (2.41b}, {2.42a), (2.42b),
[2.44a) and {2.44b}. The results are given below.
%%ii’i‘ jisevenand i > 2, 7 =01,
Pij = ——i,;, iisoddand ¢ > 2, ) =0, {2.46)

Q, iisoddand i > 2, j=1.

PGt s even and 0, 1 > 0, =01,

li+ 1)
i+1
Yig = m({%w_ff’ tisodd and 1 > 0, 7 =10, {2.47)
0, iisodd and i > 0, j = 1.

(b) The remaining elements in the matrices p and v are expressed in the recursive
relatiens. There are three rules for obtaining these recursive relations based on the
simultaneous equations (2.41¢)-(2.41e), (2.42¢), {2.43c) and (2.44c¢). First, an element
either p; or v; can always be calculated in terms of pyj and vy F 20437 > 20 + 5.
Reminding that the first subscript ¢ implies the corresponding element multiplied by
(kyz)" which is of O(A*) and the second subscript j indicates the multiplication of M,
the combination of the two subscripts, 2¢+ §, indicates the order of A associated with
the corresponding element. Hence, this rule is expected because in a perturbation
method the coefficients associated with higher order terms should be solved in terms
of coefficients associated with lower order terms. However, there exists a scenario: in
each of the above equations there are two elements which belong to the same matrix
and whose combinations of the subscripts (2¢+7) are the same and the largest. Hence,
the second rile for deriving the recursive relations is how to decide which of the two
elements is treated as an unknown. When the two elements in an equation has the
samne greatest combined value of the subscripts, i.e. 2147 = 2¢'+ 7', then the element

has a greater second subscript 7 {j > ') is calculated based on the element of a smaller




second subscript. The reason why the element with a smaller second subscript j' is
always known earlier than the one with a greater second subscript j is because the
elements in the first two columns of the matrices { p and ) have already been solved
as described in part (a}. Therefore, for the elements with the same combined value of
the two subscripts, the recursive relations for the elements propagates from the left
to the right of the matrix. Finally, as shown in (2.42¢), two elements g, , and v, ,
have exactly the same subscripts and their combination are the greatest. Thus, the
third rule for obtaining the recursive relations is that ~,, , is caiculated based on the
results of pr,,,. This is because that the calculation of the corresponding p,, ,, can be
made without knowing v, , in advance as indicated by (2.44¢).

According to the above three rules, the order for calculating the elements in the
matrices p and -y is determined and sumﬁaarized in {2.48}. The number at the location
of an element indicates the relative sequence to be calculated in using the recursive
relations. For clearness of printing, the corresponding elernents are not printed. It
should be reminded that the elements in the first row of p are treated as known and
the elements in the first two columns in both matrices have been given in (2.46) and
{2.47).

Pos Por Poz Poz Poas Pos Pos Por Pos
po o (1) (2) (4 (6) (9) (12) (16)

h=|pmo m () G () (1) 15 .. o (248)
psa e (7)) (10) (14)
7

| /

20 pa (133 {17
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(2.48b)
Substituting 73 and &3 into the boundaryv conditions (2.30) and (2.31) and col-
lecting the terms of the same order in terms of the wave steepness, £, we obtain the

following equations

O(1): Aswsy = azg, {2.49a)
O(E}) : "—‘43&)37 — ;43!&:3:1-’3;1—&4)1 (,0() - &;F) -+ sy (b - G.’I—l) = O, (Qégb)

Agent — azgd = 0. {2.49¢)

O(l) Lo dglly = A3;€3, (250&)
O(S}) : '—;"%3}63(7' + '}’D) + Qg (w‘gb “+ wh A) -+ G,gkgkflwl (p(} - Q;F) = 0, (ZSOb)

— Asky (F -+ pl) + @z + 3w (b - CY;) = (. (250{3)

where the equations of O{z,) are further split with respect to the factors of sin 8; and
cosf. Equation {2.49a) renders the relationship between the average potential and

elevation amplitudes,

aszy P
Ay = =2 (2.51)
Wz
Combining (2.49a) and {2.50a}, the linear dispersion relationship is obtained: .7 =
s ) \ J b 3

gky. Bquation (2.49¢) relates the phase shift A to 7,

A= AT (2.3

]
it
3%
e




b
]

Noticing A? = o7k /g, (2.52) and (2.51), equations {2.49b), (2.50b) and (2.50¢) can
g TSV / ‘ ) eq & / \ )

be reduced to,

—7 = A la AT+ b — ot =0, {2.53a)
—7*—’;,’0—%—b+&;"1,>\”1p9+,k27"-,\‘1F =], (2.53b)
—0'— py + A1 + Ab - Aoy =0. (2.53¢)

Although the short-wave potential ®; depends on many parameters (p, and =,
which can be determined using the recursive relations in terms of pg and 7, it is noted
that only pg, p1 and v appear in the free-surface boundary conditions. Subtracting
(2.53a) from {2.53b)} and subtracting (2.53¢) divided by A from (2.53b), {V'e eliminate

b from the system of equations.

g+ a4 207 A gy -+ A2 — 207 =0, (2.54a)

=27 = v+ a7 A po + ATy 4 oy + AP =0, (2.54b)

Since vy and py can be calculated in terms of py and 7 using the recursive relations
resulting from the Laplace equation as described earlier, there are only two unknowns
7 and pp in (2.54) and hence they can be solved exactly. The procedures are briefly
described below.

Equations (2.54a) and (2.54b) can be further perturbed in terms of A, From

(2.54a), we have the following set of equations,

O(A"Y) : poo = ey (2.53a)
IAYERLE E‘ B apom
O(A") 0 pgy = 5{&{*;@3 -1}, {2.55D)

L 1 e
O(A) pos = 5o {2.55¢]

s ey N
O(N") 2 popsr = 7;{”}’0?1 ~ Tp-2), n

v
ro

(2.55d}



Similarly. equation (2.54bj can be perturbed into the following set of equations,

O()\”}} Do fop = —epy = on i, {2.56a)
O = %(&';1;}01 + oy — Yoo + @) {(2.56b}
O\ = %(inﬂez + P12~ o), (2.56¢)
O{A"y 0 1y = %(Cf;iﬁ(]n%-l + Pinet — Yon — Ton—2)s n > 2. {2.56d)

Noticing g = Ipps = [Py from {2.41a) and (2.56a), py; can be calculated from
{2.55b). Because pg and pg, are known, the coefficients v; (J = 0,1) and p;; (7 =
0,1;7 > 2) can be obtained using the recursive relations shown in (2.46) and (2.47}).
Then pgy and 75 can be calculated as shown in (2.55¢) and (2.56b). Based on the

recursive relation {2.43c), we obtain
1 =
Pra = 0 (F’ﬁ} T 5P00 = Pza) - (2.57)

Then 7 can be calculated from (2.56¢c}. The solutions for pgn+1 and 7, for n > 2
can be alternatively obtained from lower to higher n using (2.55d) and (2.56d). In
the computation, v, and py 4, are computed using the recursive relations described
earlier. The solutions for p;; (i > 2;7 > 2) and v; (j = 1} can also be calculated
using the recursive relations. Substituting pe, and 7, (n = 0,1, ) into (2.33a), b,
(n=0,1,---} can be calculated.

The final solutions for p. v, 7, and b are presented in Appendix B. The ;i;otential
and elevation of the modulated first-harmonic short-wave components can be readily
obtained from {2.33}, {2.34) and (2.35) after p, v, 7, and & have been evaluated. The
modulated dynamic pressure head, velocity and acceleration can be derived from the

modulated potential and are presented in Appendix C.
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C.  Hybrid Wave Model

When applving the HWM to an ocean wave field, its spectrum is usually di-
vided into three regions: pre-long, powerful and restriction regions from low to high
frequency as sketched in Figure 1. The powerful region involves all free-wave compo-
nents with relatively significant wave energy and is further divided into four bands,
Le. long-wave band one (L1) and two (L2) and short-wave band 1 (S1) and 2 {S2),
starting from low to high in the frequency domain. For most ocean waves, the spec-
tral peak is usually located in the band L1. The amplitudes and especially the wave
steepnesses of the free-wave components in the pre-long wave region are very small.
Hence, the interaction of a free-wave component in the pre-long wave region with any
free-wave components is insignificant and hence neglected. It is also assumed that
the wave components in the restriction region are mainly the bound-wave components
resulting from the interactions among the free-wave components in the wave bands
of L1, L2, 51 and S2. Therefore, the cut-off frequency for the free-wave components
is that at the end of S2.

Two free-wave components located in the same frequency band or in neighboring
bands are relatively close in the frequency domain and hence the interactions between
them are calculated using the conventional. While two free-wave components located
in two different bands separated by at least one other band are relatively far apart in
the frequency domain and, therefore, are calculated using the PMM. Table I presents
the interactions between a wave spectrum with two long wave bands L1,12 and two
short wave bands 51,52, Details of band division are discussed in Chapter 3.

For simplicity of illustration, we assume that a frequency spectrum for an ir-
regular wave field is divided into three wave bands, say, two long-wave bands (L1

and L2) and one short-wave band (S1}, in describing the solution for a wave field
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FiGurE 1. Band division of directional hybrid wave model.
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Table {. Interactions between four wave bands: P: phase modulation method (PMM];
M: mode-coupling method (MCM).



of muiltiple free-wave components. It is straightforward to extend the solution to a
wave field consisting of more than three wave bands. Following the earlier discussion.
the interactions between the free-wave components in L1 and L2 are calculated using
the MCM, likewise, for the interactions between the free-wave components in L2 and
S1, respectively, and between the free-wave components in S1. However, the inter-
actions between the two free-wave components located respectively in L1 and S1 are
computed using the PMM.

Assuming there are M, and M, frequency increments in L1 and L2, and N
frequency increments in S1, respectively, and there is only one free-wave component
at each frequency, the total velocity potential of a directional wave field can be written

as

G =) + Pro+ Pgipr + Psiz2 + Pys, (2.58)

in which ®;, and ®;, are the resultant total potentials, including the potentials of
all free-wave components in L1 and L2, and the nonlinear interactions between them,
P51 is the potentials of the free-wave components in S1 modulated by those in
L1, @410 is the resultant potential resulting from the nonlinear interactions between
L2 and 51, @44 is the resultant short-wave potential from interactions between the

free-wave components in S1. These potentials can be calculated by:

M . ) )
= {a;gcoshlk;(z + h)] . 302w, cosh[2k;(z + R)] |
@ : @ 5 == e A ¥ . @ 32 r | 29
L1+ Py ; { o, cosh(k,h) sin f; 3 Sinh"‘(kjh) sin(26,)
A g1 Gflils Coqh[xk - kl(? n h)}
' e o A i A LG P
i Z; { 2777 cosh(k; ~ k|h) in(f; ~ ;)
Gyl coshllk, + ki{(z + A)} | o B -
T i F I P P g su,;m;—ifé)} . g;},(\
2 T coshilks + ki A) ST } ; (2.59)

where M = M, + M,, 4, ; and A;,; are the same as Ay and Agyy given in (2.23a)




except that the subscripts 1 and 2 are replaced by ¢ and j, respectively.
AN
i = Y. G {2.60)
=AM
where @; is determined in the same way as @3 in (2.33) except that the modulation

factors f4 and fi, and the modulated phase éj need to be extended to allow for the

modulation by multiple long-wave components in L1,

Ay
fa; =143 =7 co86;, (2.61)
=]
Afy ¥
feg =23 {EZZ cos f; + £,z cos b [Z "ﬂz‘j(ktZ)IJ } : (2.62)
1=} {==0)
. My J
8 =kt + kjyy — wit + 6; + Z {f’cja,- sin &, Z p;,;j(kgz)i} , (2.63)
i=1 =0

where the subscripts of ¢ and j stand for ith long-wave component and jth short-wave

component, respectively.

M+N Saj—'chosh[%j(z—i—h)] MeN  i-1 Af M+N)

Pgr0 + Gog = Z g Sinhg(kjh,) Slﬂ(?gj) + ( Z Z + Z Z

F=M+1 J=ME2i=M+1l j=My Al isA+]

aagw; - coshlk; — ki|(z+R)]

{ 2 Ai-s cosh(lk; — kijh) sin(6; - 6)

LY ccoshlik; + k;l(z + h)]
2 cosh(lk; + k;|h)

Siﬁ(gj -+ 8;)} . (264}
Similarly, we can express the surface elevation 7 as
7= "Ny + Q2 + Qsins + Nsie2 + Nss, (2.63)

where the right-hand-side terms are corresponding to the potentials with the same

subscripts in (2.58).

M
e = Z a; cos
=
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Moate? [ 3cosh{2k:4) 1
+y ALy (josi{ L - cos 26,
o4y sinh™{k,h) sinh”(k; k)
A -1
s ks
SO BT 2 A A coslB, — 0))
- 20
F=2 =1 7
oL , _
BT + N Arsy + M) cos(6; + 9}-)}. (2.66)
2&3
M+ N Ay -
NigiLy = Z aj{l + Z{fgbﬁ Cos 91) CGS Qj? (26?)
F=AM 1 i=1

where b;; is the value b for jth short-wave component modulated by ith long-wave

component and

M

9 = KjrT + kyjyy — wit + 0 + Z kja;poq; sin B; + ZW JAVHES T - (2.68)

EES} tm}
in which pg;; and Ay; are the coefficients py and A of jth short-wave component

modulated by ith long-wave component, respectively.

N {sz' MaN -1 A A+ N
nsiLe + Nss MZ'L—COSQQ + ( > Z > )
¥

2=1 jem M 42t M bl JmA ]t A
ik

X {M{W(l - )\)AJ‘_{ 4 ﬂfjw_z] COS(@J‘ - 91)
QCBJ‘

aia;,

+ L1+ A) A + M) cos(8; + 8, )} [2.69)

20
The HWM solutions for pressure, velocity and acceleration can be readily derived

from the velocity potential, and are presented in the Appendix C.
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CHAPTER III

PREDICTION OF WAVE KINEMATICS

Existing capabilities of predicting kinematics under regular wave conditions have
been found to be within the accuracy {~ 5%) of inherent errors in the laboratory mea-
surements (Dean 1990). But, wave kinematics under irregular ocean waves is not just
a simple superposition of wave kinematics of each regular wave component. Linear
superposition may be quite wrong if applied to predict wave kinematics above the still
water level (swl) because the contribution of short-wave components is exaggerated
due to the exponential factor of 2.

Many stretching and extrapolation methods of computing the irregular wave
kinematics have been proposed. However they are based on empirical modifications
of linear wave theory and usually lack sound theoretical grounds. Laboratory and
field data have shown that these methods may either underestimate or overestimate
wave kinematics above the swl (Donelan et al. 1992). Moreover, these modification
methods are still controversial among hydrodynamicists (Sobey 1990}.

The nonlinear solution of the MCM considers the wave-wave interactions as bound
waves which are introduced to correct the leading-order solutions. However, the
truncated solution may not be convergent if £, > &, (Zhang et al. 1993). For instance,
considering wave kinematics above the swl, the second-order solution can be greater
than the already exaggerated leading-order short wave kinematics. The truncated
MCM soizziien may thus be divergent and may not correctly predict the irregular
wave kinematics, specially wave kinematics above the swl,

The PMM is an alternative to the MCM. In the case of a long- and short-
wave component interaction, it directly considers the modulation of a short-wave

component by long-wave components in its leading-order solution. In other words, the
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second-order interaction between a short-wave and long-wave component is included
in the solution for the modulated short-wave component. The short wave is assumed
to ride on the surface of the long-wave component. the leading-order of the short wave
kinematics considers the vertical distance with respect to the long-wave surface due
to the presence of the long wave component. Figures 2 demonstrates the resultant
horizontal velocity of a short wave and a long wave. The PMM considers the vertical
distance of the short-wave component with respect to the long-wave surface while
leading-order MCM considers with respect to the swl. We observe that the leading-
order MCM over predicts the kinematics of the short-wave component at the long-
wave‘peak and underestimates at the long-wave trough.

Hu et al.(1995) used the second-order MCM to compute the wave kinematics
under unidirectional irregular waves. It was found that the predicted wave kinematics
above the swl by the MCM was very sensitive to the cutoff frequency. The inclusion
of high frequency wave components by choosing a higher cutoff frequency, greatly
changed the wave kinematics in the vicinity of the swl. They then concluded that
the large change was caused by the inelusion of additional high frequency short-
wave components. The large change of kinematics of a wave field should result from
the inclusion of additional large wave energy. It is not likely that the inclusion of
trivial energy wave components causes a big change of wave kinematics. Hencg, their
conclusion explanation was incorrect. The contradiction between the inclusion of
additional trivial energy and large change in wave kinematics is mainly due to the
divergence of the MCM solution.

In this chapter, we will theoretically and numerically show the divergence of the
MCM solution under the condition of €1 > ;. Predictions of wave kinematics by the
MCM and PMM are compared. The sensitivity of wave kinematics prediction by the

MCM solution with respect to the cutoff frequency is also discussed. Prediction of
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4
HE O

FIGURE 2. Resultant horizonta) velocity in z-direction of a long wave and a short wave
obtained by the PMM (~e-), (- - -) is the leading order solution of short
wave velocity by the MCM, long wave velocity is (—) for reference, the

velacity is nondimensionalized by {k1/g)°7.
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unidirectional irregular wave kinematics by the directional HWA is compared with

that by the unidirectional HWM! that has been verified with laboratory measurements.

A, Two Wave Components Interaction

When £, < £, < 0.3, the PMM is identical to the MCM up to third order in wave
steepness. On the other hand, when £, approaches z;, the MCM converges slowly and
eventually diverges when £, > ;. (Zhang et al. 1993; Chen & Zhang 1997)

Two free-wave components are considered with the long-wave component at the
frequency of 0.1328 Hz and a short-wave component at 0.2148 Hz. The water depth
is 145.0 m, which is of intermediate-depth water condition to the long wave and deep-
water condition to the short wave. The wave length ratio of the short to long wave &;
is 0.3822. Steepness of the long-wave component is 0.10. The short-wave component
has an amplitude of 0.5382 m and its steepness is 0.10 also. The direction angel is 0
degree for the long wave component and 30 degree for the short one.

Both the MCM and PMM are used to predict the surface elevation at horizontal
position {-11.6 m,0.0 m). Velocity and acceleration components are also predicted at
the same location but 3.0 m below the swl. Figure 3 shows virtually identical time
series of surface elevation. horizontal velocity component in z-direction and vertical
acceleration component predicted by of these two approaches.

However, when ¢, approximates g, that is, the long-wave component 1s steep
and the short-wave component is much shorter than the long-wave component in
wavelength, the MCM solution may diverge while the PMM remains convergent. The
non-convergence of the MCM solution cau be theoretically demonstrated as following.
For simplicity, the wave directionality is excluded and water depth is set to be deep

for both long and short-wave components as these two factors are not crucial to the
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divergence of MCM solution.

The nonlinear potential functions by the MCM solution is simplified {rom the
directional intermediate-depth sohition by setting the directional angles of zero and
Cxy == 1, (153{*‘2)

2

i - ki lz
$ = Z 4 k2 gin G, — ayapwee® ¥ 5in (8, — 6}, (3.1}

il 2

where subscript 1, 2 stand for long- and short-wave component respectively. Leading-
order velocities are the spatial derivatives of the leading-order potential. For instance,

the horizontal velocity is
U.(l) = a;wlek” sin 91 + Ggu}gé’kzz sin 92. (32)

When the short-wave componert becomes relatively short and the long-wave compo-
nent is relatively steep, the leading-order velocity of the short wave component under
the long-wave peak is obviously over estimated because of the factor of ek (z ~ ).

The second-order velocities are the derivative of the second-order potential. We

still use the horizontal velocity as an example,
u(g) o= -—alagwg(kg - k'i)(f(klg;wk 608(62 - 93) (33)
Noticing that »fi = g,, we rewrite the second-order horizontal velocity as

w? = 2papuwn (1 — g7 e e ™M cos (8, — ). (3.4)

We consider the kinematics near long-wave crest, ie. z ~ 4y or kg ~ &, The
amplitude of above second-order velocity can be approximated by

s £33 £ ; » -
] = agwe («:m + a;) i1 —e
L

2+ 0ED], (3.5)

B
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FiGURE 4. Comparison between MCM (- - -} and PMM (~e-) for a dual free-wave
spectrum with £, = 0.20, &, = 0.139, z-direction horizontal velocity profiles
of the long and short waves up to the leading order {1 —) and the second

order (I —), and the long-wave velocity only (- x -) .

where €517 is approximated by its truncated Taylor expansion. The dominant terms
of Equation (3.5} are (wsjaf’“ o+ si> asw»e*2%. Under the condition of &; > &y, ~gg!
apw2e2% is bigger than the leading-order term agw»e*?* which is over estimated. The
second term £ a,woe? is much smaller than the leading-order term because of the
factor of z;. Then the correction of second order under this condition is greater
than the exaggerated leading-order solution, which indicates that the MCM solution
becomes divergent.

To numerically demonstrate this point, a set of steep dual free-wave components

are studied with the long-wave component at the frequency of 0.07422 Hz and a
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short-wave component at 0.1992 Hz. The water depth remains 145.0 m. The short to
long wave length ratio =, 15 0.1390 and steepness of the long-wave component is .20,
The direction angle is 15 degree for the long wave and -~ 15 degree for the short wave.
Figure 4 shows the z-direction velocity under the resultant wave crest where the short-
and long-wave crests coincide. The resultant horizontal velocity of the long wave and
the leading-order short wave predicted by the MCM solution is much greater than the
horizontal velocity induced by the long wave only. Although the contribution from
the leading-order short wave is exaggerated because of the factor €% (z ~ 1), the
increase in the resultant horizontal velocity is consistent with our intuition because
under the resultant crest both wave components are in the same phase. However,
when the resultant horizontal velocity is computed up to second order, i.e. including
the contribution from the bound-wave components, the resultant horizontal velocity
is found to be smaller than the horizontal velocity induced by the long wave only.
This indicates the overall contribution to the resultant horizontal velocity from the
short-wave component is out of phase with respect to the elevation of the short-wave
component. This contradicts to both our intuition and experimental observations.
In contrast, the solution of the PMM up to second order gives physically reasonable
description for the short-wave velocity. Figure 5 shows the horizontal velocity of same
two wave components except that the short-wave component is now 180 degree out of
phase of the long wave, i.e. the elevation of the short wave is in its trough phzise when
that of the long wave reaches its peak phase. Hence the horizontal velocity of short-
wave component should be opposite to the long wave resultant velocitv. The results
of the MU shows, however, the short-wave velocity is in the same direction as the
long-wave component. It implies the short wave has an positive horizontal velocity
at its trough. 'This is again against the intuition and experimental observations.

Nevertheless, the PMM shows the short wave contributes an out of phase velocity,
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FIGURE 5. Same as Figure 4 except the short wave is 180 degree out of phase of the

long-wave component.

which agrees with our intuition and observations.

The above numerical examples show that when £, > z; the prediction of wave
kinematics by the MCM is divergent. The predictions become more divergent when
g1 > €7 as the second-order bound-wave contribution is much bigger than the leading-
order solution. For instance, assume a long wave of steepness of £; = 0.10, a short
wave component whose frequency is 9 times of that of the long wave. The wa"\';e length
ratio is 1/81 if we assume both the wave components are of deep-water condition.
Then the dominant second-order solution of short-wave component is about 8 times
bigger than the already exaggerated leading-order solution. In summary, the MCM is
only valid for narrow-banded spectral interactions. For broad-banded wave spectra,

it is necessary to use the PMM to compute the wave-wave interactions of relatively
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far-apart wave components .

B. Wave Spectrum Prediction

Analytical wave spectra are usually formulated based on measured ocean wave
data. For instance, Pierson-Moskowitz spectrum (Pierson & Moskowitz 1964) is one
of the best known wave spectra. Huang (1990), Tayfun {1990) and Zhang et al.
(1996) argued that an analytical wave spectrum is actually a resultant spectrum,
which is composed of leading-order and higher-order wave-wave interactions. If the
nonlinearity is considered only up to second order in wave steepness, the spectrum

canbe decomposed as

Sy = Sy Sngs (3.6)

where S, and S, correspond to first- and second-order surface elevation respectively.
To compute the second order wave-wave interactions, Sy, should be used instead of 5.
Chakrabarti (1987) and Huang {1990) gave a general form of a first-order spectrum

also known as fruncated Gamma spectrum,

5,.(0) = e (—- Z) e, (37)

where B,C,p and g, are four independent parameters of the spectrum. w. is the
cutoff frequency. Tayfun (1990) studied the relationship between 5, and Sy, using
second-order MCM wave theorv. He argued that for an observed spectrum, such as
P-A type spectrum that attenuates as f =5 with frequency, the first-order spectrum,
5,.(f} can be characterized by spectra that attenuate as {77 with frequency if the
second-order contribution is excluded.

Figure 6 shows two truncated Gamma spectra of p=9and p=5 respectively.
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5=0.06.

Both of the spectra has a nominal steepness of 0.06 defined as

T 2

??1“"{ ‘p

8§ m 38
( )

where ‘731 is the variance of the power spectrum, which is equal to the area under
the S, (f) curve. w, is the peak frequency. The amplitude of high frequency wave
components in a spectrum of p = 9 decay faster than those of a spectrum of p = 3.
The spectral bandwidth parameter ¢ of the Gamma spectrum of p = 5 is 0.444 and
(1.22&6 of the Gamma spectrum of p = 9. ¢ is defined as

[Thpiig

\{ m?

where, m; is the ith moment of a wave spectrum.
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To apply the HWAI to compute the wave kinematics of a wave spectrum, it is
necessary to divide the wave spectrum into several bands as sketched in Chapter 2.
There are two criteria for the band division (Zhang et al. 1996). First, the width of
each band shoald be narrow so that the application of the MCM to the interactions
of wave components within the same band is valid. The band width is limited to a
maximum equivalent wave steepness, £, which is defined as

J
ge =k, Z a1, sin B, (3.10)
J=N
where N, N,, are the subscripts of the first and last components in the wave band

and J is determined from 2k; =~ ky,. The criteria is that the maximum equivalent

wave steepness is much smailer than one
Mazx(s.) € 1. (3.11)

The second criterion is that wave components in short wave bands should be of
deep water condition. This is due to the assumption of the PMM that the water is
considered as deep-water condition with respect to the short-wave components.

In the present study, the long wave bands start where the wave amplitude reaches
a certain percentage of the peak wave amplitude, say 3% of the peak amplitude. As
the amplitudes of wave components in the pre-long wave band are comparatively
small, their interactions with other components in the spectrum are negle;:zed. In
other words, only the leading-order contributions of the pre-long band are considered.
The first short-wave band starts where the wave component becomes deep wave with
respect to the water depth. Then the long wave bands are determined. The last short
hand ends at the cutoff frequency. If the cutoff frequency is relatively higher, it is
necessary to divide the short wave bands into more than two bands. Figure 7 shows

a wide spectrum with two long wave bands and four short wave bands,
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Cutoff Frequency By Gy, 7wy 8wy Sy,

mg{m?) 11.37606 0 11.3760 ¢ 11.3760 | 11.3760 11.3760§

Table 11. Zeroth moments of a Gamma spectrum with 5w,~9w, cutoff frequency, nom-

inal steepness $=0.055.

Hu et al. (1995} used the MCM to study nonlinear wave kinematics of irreg-
ular waves of broad and steep spectra. They found that significant change of wave
kinematics by the inclusion of high frequency wave components though the included
high frequency wave components were of insignificant amplitudes. They concluded
that the large change was caused by the leading-order contribution of high frequency
wave components. Based on the analysis of two wave components interaction, it
is conciuded that application of the MCM to predict the wave kinematics of wave
components that have quite different wavelengths is invalid. Therefore it is invalid
to apply the MCM to predict wave kinematics of broad and steep spectra when the
truncated MCM solutions become divergent.

Figure 8 shows predicted horizontal velocity profile under a steep wave crest using
the MCM. The spectrum is a Gamma type spectrum of p = 9 and nominal steepness
0.055. A range of cutoff frequencies from 5w, to 9w, are compared, where w, is the
peak frequency. The profiles predicted by the MCM show oscillating characteristics
with respect to the cutoff frequency. The prediction at 9w, obviously is divergent.

As we have discussed, the MOM hecomes divergent for two wave components if
g1 > 2. When applying the MCM 10 a wave spectrum of relativelv strong nonlinearity,
the second-order interaction by the MCM between long- and short-wave components

that have a small wavelength ratio z;, may be divergent. Hence the prediction of wave

kinematics by the MCM becomes divergent.
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From the point of nonlinear wave theory, we have showed earlier the reason of
divergence of the MCM under &; > g for two wave component interaction. Now
we use the principle of energy to show briefly the inconsistency of the predictions
by the MCM. Considering a surface elevation time series at a field point, the local
potential energy is proportional to the instantaneous surface elevation amplitude in
the aspect of linear wave theory. Because the local kinetic energy 1s proportional to
the potential energy, then the change of local kinetic energy should Carresgjénd to the
imstantaneous surface elevation. In other words. it is unlikely that an insignificant
change of local surface elevation causes a significant change of local kinetic energy.
Now we use a Gamma spectrum of p = § as an example to show this point. The

spectrum has a spectral steepness of 0.055. Table II displays the zeroth moment of
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| Cutoff Frequency | dw, | 6w, | Twp | 8wy | Buy

i
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Table I1I. Surface elevation at t=34.5 s of a Gamma spectrum with 3w,~9w, cutoff

frequency, nominal steepness s=0.055.

the Gamma spectrum for different cutoff frequencies. Zeroth moment is obtained by
oG
e = /0 S, (f)df. (3.12)

It is observed that the wave components of frequency higher than 5w, have so small
am[;litudes that their contribution to my is negligible. Table III displays the instan-
taneous surface elevation at t = 54.5 seconds versus different cutoff frequencies. The
change of surface elevation caused by the inclusion of high frequency wave component
(> 5uyp) is within 1 em, which is negligible to the eleven meter total elevation. There-
fore the inclusion of the high frequency wave components is unlikely to change the
local potential energy notably. The significant change of the local kinetic energy by
the inclusion of high frequency wave component is not physically realistic. The diver-
gence of prediction is caused by the improper modeling of MCM for wave components
of 21 > 2.

Figure 9 depicts the horizontal velocity profile predicted by the PMM. The wave
spectrum is the same as that of Figure 8. Because the amplitudes of wave components
bevond 3w, are very small, the inclusion of higher frequency components has negligible
influence on the resultant wave kinematics except for some small changes of velocity
at the wave peak.

Therefore, the confusion of Hu et al. (1895) results from the divergence of the

MOM solution itself. The divergence of wave kinematics consequently led to divergent
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Fioure 9. Horizontal velocity profile against cutoff frequency by the PMM, same

spectrum as Figure 8.

wave forces on the structure in their study. We will discuss this in Chapter 4.

From above analysis, we may conclude that if only a wave spectrum is narrow
banded that meets the criteria of the band division in Equation (3.11) can the MCM
solution be applied. However, practically speaking, the wave spectra are usually non-

narrow spectra, it is necessary to apply the HWM to predict the wave kinematics.

C. Comparison between UHWM and DHWM

Zhang et al. (1996) applied the unidirectional HWM (UHWM) to predict irregular
wave kinematics. Excellent agreements have been found between the wave model] and
laboratory data. Comparison between the predictions of the DHWM and UHWAM
has shown excellent consistency [Zhang et ab. 1998). The free-wave components of
the wave trains, shown in Figure 10 are obtained by the decomposition of the surface
elevation measurement by a wave gauge located at = = 0. Figure 11 demonstrates the

sime series of horizontal velocity by UHWM and DHWM for a anidirectional wave
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field. One finds out excellent agreement between these two models. As in the near

future, direct verification between directional wave measurements and the model will

be conducted with the advanced directional LDV facility.
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CHAPTER IV

WAVE FORCES ON A SLENDER BODY STRUCTURE

An accurate and efficient prediction of wave forces acting on offshore structures is
very important in designing offshore structures. For slender body offshore structures,
the Morison equation is usually applied to compute the wave forces, which models
the wave forces on a structure segment as directly related to the wave kinematics,
Therefore, the accuracy of the prediction of wave forces depends on the accuracy of
prediction of wave kinematics.

_ High order Stokes wave theory has been applied in the design approach of reg-
nlar waves. Satisfactory matches have been found between the Stokes theory and
experimental resuits (Dean 1990). For the design of structure under irregular waves,
linear wave theory may not predict the wave kinematics accurately specially in the
surface vicinity and hence may not provide good estimate of wave forces on struc-
tures. Many modified methods, such as Wheeler stretching, Linear Extrapolation,
etc., have been proposed to tune the wave kinematics near the surface region, where
significant discrepancy has been found between the prediction by linear wave theory
and field and experiment data. These modifications usually lack sound theoretical
grounds and laboratory and field data have shown that these methods may either
underestimate or overestimate wave kinematics above the swl {Donelan et al. 1992).
The predictive potential and comparative performance of these methods need more
detailed evaluation (Sobey 1990},

The MCM is an improvement to the stretching methods. However it was tirnited
to narrow-band wave interactions. As shown in Chapter 3, the MOM s divergent
for bichromatic waves if £, > £,. Hu et al.(1995) applied the second-order MCM to

study the surface fluctuation and wave nenlinearity effects on slender body structures.
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They found quite dramatic change of wave forces on the structure due to the inclusion
of high frequency wave components. They concluded that the change was mainly
cansed by the leading-order contribution from the included short-wave components.
As we have shown in Chapter 3, the wave kinematics predicted by the MCM may be
divergent and thus the predicted wave forces may be divergent.

Resides the wave model for computing wave kinematics in using the Morison
equation, other nonlinear wave effects on computing the wave forces are also impor-
tant. Linear approach usually integrates the unit wave forces to the swl. Provided that
the wave kinematics above swl can be accurately predicted, the wave forces should
be integrated up to the instantaneous surface. The consideration of instantaneous
surface is commonly referred to as the wave intermittency or surface fluctuation.

In this chapter, we apply the HWM to study the wave intermittency and non-
linearity effects on a single degree of freedom (SDOF} slender body structure. Then
we will discuss the invalid use of the MCM to predict the wave forces in steep and
non-narrow spectra cases by Hu et al. {1995). Comparison between the API (1993}
recommended method and HWM is also carried out in the later part of this Chapter.
Based on the HWM simulations, important conclusions of the nonlinear effects on
the wave forces are given. A desirable cutoff frequency is also proposed based on the

HWAL

A. The Morison Equation

The computation of wave force on a structure from the particle motion of the
surrounding water by the Morison equation, i based on the assumption that the
Aow motion is unaffected by the presence of the structure. [t has been discovered

that the Morison equation is valid for D/L. < 0.2, where D and L. are the charac-
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teristic dimensions of the structure and wave length respectively. In this study, we
consider a simple cylinder structure model and keep the diameter of the structure
much smaller than the characteristic wave length at the peak frequency of the wave
spectrum. Figure 12 shows the definition of a cylinder structure. L is the total length
of structure. h is the water depth, which is assumed to be of intermediate-depth
water condition with respect to the peak wave component. The z-positive direction
is the wave propagation direction and z-direction points upwards.

The general form of wave forces on a structure segiment given by the Morison
equation s expressed as

f = %C’ppﬂéU - Ubl(U - Ub}ds -+ CM,DA(G — Ub)ris, {—11)

where, Cp, is known as the drag coefficient. C)y inertia coefficient and p the density




of water. U and Uy are water particle velocity and body motion velocity, U and Uy,
acceleration vectors of water particle and body motion respectively. A4 is the cross
section area and D the diameter of the section. For a cvlindrical styucture, D is the
diameter for the structure and A = ;‘%

Total wave forces are obtained by a vertical integral of the segmental wave forces.
One major purpose of this research is to investigate the nonlinear effects of both free
surface fluctuation and the wave nonlinearity on the wave forces using the HWAL To
achieve this objective, we compute the wave forces on the structure using:

{1) liner wave theory, computing the wave forces up to the swl, hereafter subscripted
with [

{2) HWM, computing the wave forces up to the swl, hereafter subscripted with nl;
(3) HWM, computing the wave forces up to the instantanecous surface, hereafter
subscripted with n.

Equation (4.2} shows the forces computed by linear wave theory and Equation
(4.3), (4.4) for hybrid wave theory without and with consideration of surface inter-

mittency, respectively.

. [t} . B
Fi= [_h CrrpA(U; ~ Up)dz, (1.2a)
d o1
= /“h “Q“CDPDIUE — Up[(Uy — Uy )dz, (4.2b)
y 0 . . _
Foy = " CarpA(Uyn — Up)dz, (4.3a)
S0 5
WERE ?5@:9;’33!{5:1 = Uy (Up =~ Uyjdz, [4.3b)
—-h 4
. 7 . o
Fi= [ CypA(Us - Uiz, (4.4a)
J—h

n 1 , ) |
Fi / 5C0pD[Un = Up{(Uy — Up)d=. (4.4b)
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Table IV, Significant wave height against nominal spectral steepness s.

Uy, U, are the water particle velocity computed by linear wave theory and U,. U, by
the HWM, respectively.

API (1993) recommends Wheeler stretching approach to compute the wave forces
an slender body structures. In this study, wave forces using the stretching method are
computed up to the instantaneous surface. The predictions of wave forces between

linear stretching method and the HWM are compared later in this chapter.

B. Numerical Simulations

To study the nonlinear wave effects, a range of spectra of different nominal steep-
ness are used. The nominal steepness of a spectrum is defined in Equation (3.8).
The spectral steepness s ranges 0.01 to 0.06, representing weakly to relatively strong
nonlinear waves. The spectrum of steepness 0.06 has a significant wave height equiv-
alent to 100 vear Gulf of Mexico Storm (API 1993}, Table IV shows the significant
wave height versus spectral steepness for the Gamma spectra with the peak period
of 16 seconds. The initial phases of the free-wave spectrum are randomly génerated.
Because the spectrum is unidirectional, the directional angles of all the free-wave
components are set 1o zero.

The wave forces on a SDOF evlinder structure are computed using the aforemen-
tioned three different approaches. Simulation is carried out in the time domain with
(.25 second interval and 4096 total time steps. Total wave forces are integrated using

a Gauss Quadrature method. Standard deviations of wave forces are denoted as o




and o7 for inertia, drag wave forces respectively, with subscripts {.nl and n standing

for the three different approaches.
PE

C. Effects of Surface Intermittency and Wave Nonlinearity

The ratios of wave force standard deviations between different approaches are
computed to investigate the effects of surface Auctuation and wave nonlinearity. They
are defined by

Tq Tyt &y

Hy == =y == e [l TR (43)
i I On

41 is the ratio of wave force standard deviations by linear approach to the HWM of
excluding the surface fluctuation. It is introduced to study the effects of wave nonlin-
eari‘ty on the wave forces, more specifically the nonlinear effects without considering
the surface fluctuation. p. is introduced to study the effects of surface fluctuation,
considering the wave nonlinearity. p3 shows the overall effects of both surface inter-
mittency and wave nonlinearity on the wave forces.

Figure 13 plots the simulation results uf, u! versus spectral steepness s. From
the plot, one finds out that the difference between linear and the HWM without
consideration of surface fluctuation is not significant. This is expected because the
nonlinear wave interactions are not significant below the swl.

Figure 14 plots the simulation resuits p2 and y} versus spectral steepness s. One
finds out the surface fluctuation effect is important when the nonlinearity of wave-
wave interaction is considered. The surface intermittency effect increases with the
spectrai steepness. Even if the nonlinear wave-wave interaction is considered, the
neglecting of surface intermittency may lead to underestimate of wave forces for this
tvpe of structures.

From Figure 14, we also observe that the drag forces are more sensitive to the
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FIGURE 15. Water particle velocity and acceleration in a periodic wave

inerease of the spectral steepness than the inertia forces. This can be briefly explained
as following. As shown by the Morison equation, the magnitude of the drag force f¢
is proportional to the horizontal velocity square. The horizontal velocity is in phase
with the surface elevation for a periodic wave. Under the wave peaks the horizontal
velocity increases exponentially with the vertical coordinate 2, as shown in Figure 15.
Because the fluctuation of the surface elevation increases with the spectral steepness
or significant wave height, the horizontal velocity therefore increases correspondingly.
On the other hand, the horizontal acceleration is 90 degree out of phase with the
surface elevation. The maximum acceleration occurs at the swl as shown inn Figure
15. The surface Auctuation effects thus are relatively smaller on the acceleration
related inertia force.

From Figure 14 we may also observe for different wave spectra the effects of
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surface fluctuation on wave forces may be different. The gamma spectrum of p = 3
represents a relatively broad spectrum, i.e. the powerful band is relatively broad, its
nonlinear interactions are stronger compared to the p = 9 spectrum.

Figure 16 shows the effects of both wave nonlinearity and surface fluctuation on
drag and inertia forces respectively. The surface inteimitteney and wave nonlinearity
effects are important for relatively strong nonlinear waves. The prediction ‘by linear
wave theorv of drag force is 37% smaller than that by the HWM, forap=35 Gamma
spectrum of nominal steepness 0.06. Alsc one may observe the overall effects depend
on the characteristic of the wave spectrum. For p = § spectrum, the effects are more
significant because of the stronger nonlinear interactions.

From the above simulations, we conclude that the consideration of both wave




nonlinearity and surface fluctuation is necessarv in computing the wave forces of
this tvpe of structure under relatively strong nonlinear waves. Neglecting of either
factor conseguently leads to incorrect estimation of wave forces. Linear approach
and nonlinear wave approach excluding surface fluctuation effect may considerably
underestimate the wave forces on the structure.

However. fixed bottom structure is used in this study to compute the wave forces.
For floating type of the structure, like semisubmersible structures, TLFP platforms,
the diffraction effects may become important (Sarpkaya 1981}, More investigations
of these effects are needed before we extend this conclusion to other types of off-
shore structures though we believe that the effects of surface intermittency and wave
nonlinearity are still important.

It is also important to point out the effects of surface intermittency and wave
nonlinearity depend on the spectrum characteristics. Generally speaking, for a spec-
trum with relatively broad powerful band, or in other words, a spectrum has a slower
decaying factor of frequency, the effects of surface fluctuation and wave nonlinearity
are stronger because of the stronger wave-wave interactions between the significant
wave components. In the above plots, we have observed the surface fluctuation and

wave nonlinearity have more influence on Gamma spectrum of p = 5 than that of

p=9.

. Cutoff Frequency

In the computation of spectral wave forces on offshore structures, a cutoff fre-
quency of the wave spectrum needs to be determined. Many computations have
shown sensitivity of their computations to the cutoff frequency. Hu et al. (1995}

used the MCM to compute wave forees of a SDOF structure using the Morison equa-



tion. Their computation showed tremendously different predictions of wave forces
for cutoff frequency 5w, and 10w, of & same input wave spectrum. They found that
the difference was due to the inclusion of short wave components. Theyv concluded
that the leading-order wave kinematics of short-wave components was formulated by
¢*2 and the short-wave components dominated the total wave forces when the waves
become steeper. nevertheless, their conclusions were incorrect. Firstly, the short-
wave components in the tail region of the spectrum have insignificant amplitudes,
their contribution to the wave potential energy is small. The inclusion of them is
unlikely to cause big change of wave fields. Secondly, wave forces on the structure, is
on the other hand, a scale of the energy of the wave field. Greater wave forces on a
samie structure correspond to stronger wave conditions. The wave forces can not be
changed greatly by including the wave components with small energy components,
whose contribution to the total potential energy 1s insignificantly. As we have shown
in Chapter 3, the problem was caused by the divergence of the MCM in predicting
the wave kinematics.

Now we use both the MCM and HWM to compute the wave forces including the
surface intermittency effect. As the MCM approach may predict vertical kinematics
profiles that have sudden changes above the swl, we applv a higher order Gauss
Quadrature method than the HWM.

We define the ratio of wave force standard deviations of cutoff frequency at Swy
to 9w, for a same input spectrum, as i

o = i) (4.6)
Tn{9e,)

Figure 17 shows g, versus spectral steepness s by the HWM and MCM respec-

tivelv for a Gamma spectrum of p = 9. From the plot, the HWM shows the prediction

of wave forces does not depend on the cutoff frequency. The difference of the wave
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forces predicted by the HWM, which is caused by the including of high frequency
wave components is negligible. However, the MCM presents sensitive characteristics
to the cutoff frequency. For relatively steep wave cases, say s == 0.06, the inclusion of
short wave components by changing the cutoff frequency from 5w, to 9w, Increases
the wave loads by more than a hundred times.

We are not surprised at the predicted results by the MCM. In Chapter 3 we have
shown some examples of wave kinematics by the MCM that are very sensitive to the
cut off frequency. The sensitivity of the MCM to the cutoff frequency in predicting the
wave kinematics and forees is caused by improper modeling of wave-wave interactions
of relatively broad and steep wave spectra. But the HWM uses the PMM to model
the short- and long- wave interaction and provide consistent predictions.

Based on the above discussions, we mayv conclude that it is invalid to compute
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wave forces based on the wave kinematics predicted by the MCM, of a wave spec-
trum that is relatively broad and steep. The MCM may render divergent results of
wave forces on the structure under strong nonlinear waves. At the meantime. the
sensitivity of the MCM to the cutoff frequency in predicting the wave forces is on
the other hand an indicator of its incorrect modeling of wave kinematics under broad
and steep spectral waves. Intuitive observations also tell us that the inclusion of
small amplitudes wave components should not greatly change the wave forces on the
structure.

Hu et al. (1995) argued that the determination of cutoff frequency was not clear.
Based on the fact that the nonlinear HWM predicts consistent wave forces on the
structure with respect to different cut off frequencies, we may propose a desirable
cutoff frequency of 3 — 5 times of the peak frequency, for the design practice in
offshore engineering field. The determination of the cutoff frequency depends on the
characteristic of the design spectrum. If a spectrum has a relatively broad powerful
band, the cutoff frequency is proposed to close the upper limit of 5 times of the peak
frequency. But for a relatively narrow band spectrum, a cutoff frequency close to
3 times of the peak frequency is adequate. Moreover, the high frequency resultant
wave components are contributed mostly from the interactions of waves within the
powerful frequency bands. Zhang et al. (1996) argued that after certain frequency,
the nonlinear interaction from long wave bands dominates the resultant spectrum in
the high frequency region. Hence the inclusion of nonlinear interaction of the long-
wave bands may be more important than the inclusion of the free-wave components
in the relatively high frequency region. Meanwhile, we remark that it is necessary o
include third- and higher-order nonlinearity in the computation for a broad-banded
spectrum that is relatively steep as the third- and higher-order interactions from free-

wave components near the spectral peak become relatively important. The third- and
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higher-order nonlinearity is not considered in this research.

E. Wheeler Stretching Approach

Another widely used approach to compute the wave forces is the stretching
method, or called Wheeler stretching method (API 1993). Wave kinematics above
the sw! is computed using a modified vertical coordinate, which is linearly mapped
from the original positior hy

1 (47)

d+n

where z  is the modified coordinate and z is the original one.

Wave forces are computed using

F, = /Wh CrrpA(Us = Up)dz, (4.8)
71
Fi = [_5 '"échD[Uw - Ubi(Uw - Ub)d:{. (4.9)

where U, and U,, are the acceleration and velocity vectors computed by the Wheeler
stretching method.

In this study, we also use this method to compute the wave forces and compare
them to the results predicted by the HWM. Similarly, we use the time domain simu-
lation and compare the standard deviations of these two methods. The ratio between

these two methods is denoted as .,

by T wwu J“'i.l
o = (4.10)

Figure 18 plots u, versus spectral steepness s, Lor relatively steep swaves,
Wheeler stretching tends to underestimate wave foads. For two different Gamma
spectra, Wheeler stretching method tends to more underestimate the waves forces of

p = 5 spectrum than those of the p = 9 spectrum. This is because the nonlinear
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FIGURE 18. p,, versus s, (a) drag force (b) inertia force; (~o~}): Gamma spectrum with

p=0; {~A-}: Gamma Spectrum with p=5, :
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interaction of p = 5 spectrum is stronger than that of p = 9 for the same spectral
steepness,

Wheeler stretching may underestimate the irregular wave kinematics under wave
peaks. The underestimate of wave kinematics directly leads to the underestimates
of wave forces for relatively steep waves, It is necessary to apply a nonlinear wave
model method instead of Wheeler stretching method to estimate the wave forces for

steep waves.




CHAPTER V

CONCLUSIONS

A new hybrid wave model [HWM) has been developed. It uses the MCM and
PMM solutions to model wave-wave interactions between free-wave components in
an ocean feld. The MCM solution is derived for wave-wave interaction between
free-wave components in directional intermediate-depth water, while the PMM is
derived for a deep-water short wave component modulated by intermediate-depth
long wave components. The HWM divides a broad-band wave spectrum into several
wave bands so that the MCM solution and the PMM are applied to compute the wave-
wave interaction accordingly. Nonlinear wave-wave interactions between the same and
neighboring bands are computed hy the MCM solution while the interactions of wave
components that are relatively far apart in the frequency domain are computed by
the PMM.

The MCM solution is shown to be identical to the PMM under the condition
of ¢, € ¢, < 0.5. However, under the condition of ¢, > ¢, the MCM solution is
divergent while the PMM remains convergent. Therefore it is improper to apply the
MCM solution to predict the wave kinematics of a broad-band and strongly nonlinear
wave spectrum.

The HWM is applied to compute the wave forces on a SDOF cylindrical struc-
ture. Time domain simulation is employed. Truncated Gamma spectra are used for
determining the amplitudes of free-wave components. The effects of surface inter-
mittency and wave nonlinearity are studied using the HWM. It is concluded that for
this tvpe of structure, the overall effects of surface fluctuation and wave nonlinearity
increase with the increase in the spectral steepness. For relatively steep waves, the

effects of surface fluctuation and wave nonlinearity may be significant. Both wave
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nonlinearity and surface infermittency hence should be considered to estimate the
wave forces. Neglecting of either factor may underestimate the wave forces.

Tt is also concluded that the surface and wave nonlinearity effects also depend on
the characteristics of the input wave spectrum. The effects are greater for a spectrum
of broader powerful region than that of a narrower one because of the nonlinear
interaction is stronger for the broader spectrum than for the narrower one.

Hu et al. (1995) used the MCM to study the wave nonlinearity and surface
intermittency effects on fixed slender structures. Their computation considered broad-
banded Gamma spectra and used high cutoff frequencies. The computation of wave
forces are found to be incorrect due to the divergent wave kinematics resulting from
the MCM solution. The sensitivity of wave forces computation depending on the
inclusion of trivial amplitude high frequency wave components, was also due to the
divergence of the MCM solution. The HWM can render convergent prediction of wave
kinematics and hence the predicted wave forces are consistent. As a result they are not
sensitive whether or not to the inclusion of trivial amplitude wave components. Based
on the simulations, a desirable cutoff frequency of 3 — 5 times of the peak frequency
has been proposed for the design practice. It is suggested that the cutoff frequency
be chosen in the range of 3 — 5 peak frequency according to the characteristics of the
spectrum. For a spectrum with relatively broad powerful bands, a cutoff frequency
may be chosen to close the 5 times peak frequency. For a relatively narrow sbectrum,
a cutoff frequency of 3w, s suggested.

The approach for the prediction of irregular wave forces recommended by AP
(1993} is also compared to compute the wave forces on a SDGF structure with the
WML Bt is found that the recommended approach may nnderestimate the wave forces
for relatively steep waves.

The HWM was developed for unidirectional irregular waves by Zhang et al.



(1993}, This model was recently developed to allow wave directionality (Zhang et
al. 1998). It has been successfully applied to the decomposition and prediction of ir-
regular wave kinematics of both unidirectional and directional irregular waves (Zhang
et al. 1996 & 1998). Cao (1996} applied the unidirectional HWM to predict the slow
motion of a three DOF spar structure and excellent agreements have been found be-
tween the prediction and the experimental data. In this paper, the author used this
model to study the nonlinearity of wave kinematics and the surface intermittency and
wave nonlinearity effects on wave loads on slender body structures. As the HWM is
in its infant stage, still more of its applications need to be discovered in the fields
of oceanography, ocean and offshore engineering. For example, wave directionality
effects on the structure loads and motion has attracted hydrodynamicists for a long
time. It is also very challenging and urgent to combine stochastic analysis tools and
the HWM together, which will surely find this robust nonlinear wave model more

applications in the ocean science and engineering fields.
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APPENDIX A

WAVE PROPERTIES BY THE CONVENTIONAL PERTURBATION SOLUTION

The dynamic pressure head, z + P/(pg), can be derived from the Bernoulli equation

g 1 . P
T LIV 4 gz + — = O, Al

where p is the density of water. For the interaction of two directional wave compo-

nents, the hydrodynamic pressure obtained by the conventional perturbation solution

is,
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where I".a; and X are defined in Section 2.11.
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All of the ahove formulations of the wave properties by the conventional perturbation
solution can be readily extended to that for the interactions of multi-directional wave

components by summing over all the wave components.
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APPENDIN B

SOLUTION OF MODULATION PARAMETERS

The parameters of phase modulation approach can be obtained from Laplace equation
and boundary conditions as shown in Chapter 2. In this study, we truncate the
summation at J = 2. Therefore the suramations of kyz polynomials are truncated at
oo and v, respectively. The single summations of 7 and b are truncated at 73 and b,
correspondingly. For the summations of p; and ~;, we will truncate at corresponding
X order according the truncation discussion in Chapter 2. The parameters are listed

helow. pg vector is given as:

Poo = 3% (C.1a)
Por = %(affz ~1) (C.1b)
oz = %E(airﬁ - 1) (C.1c)
203 m%(afff"l + 20°T? ~ daf + 1) (C.1d)
Poi = %g oAT — 20T + 1) (C.1e)

To get a consistant truncation accuracy, we compute the summation of py up to pya.

Pro = -~ T (C.2a)

pr1 = 0 (C.2b}
1 . .
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For the summation of gy , we only compute py term.

T
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The parametrs v ,v: and < are listed below. The summation of »5 is computed up
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Once 7 is obtained . the phase modulation parameter of surface elevation A can be

computed.

(C.8)
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The summation of b is truncated at by.
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APPENDIX C

WAVE PROPERTIES BY THE PHASE MODULATION SOLUTION

The dynamic pressure of the modulated short wave component by a long wave com-

ponent can be obtained from the Bernoulli equation

P. 1 1 9. 1 p .
= VDV ww,-;i-_ VD], (C.1)

Py g g dt 2y

with
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oy cosh{kh) sin 1 (€.2)
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where the subscripts 1 and 3 represent the long wave component and the modulated
short wave component, respectively. Hence, by substituting the phase modulation

solution given in §2.1.2 into Equation (C.1), we have
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where T',K,; were defined in Equation (2.6d) and {A.3b) respectively.
The velocity components of the modulated short wave component can be calcu-

lated by the spatial derivatives of @3,
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The acceleration of the modulated short wave component is in the form of
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ZL wayolef i {sin By sin 0, {210 S — arkaA + 2y Akaz Z pilkiz) +2,C,)
it iz
. J+1 _
+cosf3[~1 — £ X cos 8 ~ 2,8, co80; — arkah Y pilkiz)]} (C.9¢)
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and the spatial derivatives of the modulated velocity components are:

[

3 -

WE%E = — o3k cos® By sin b, (C.10a)

8 ¥ i~

mg_‘i = — 303 ky "% cos 3 sin F5 sin s, (C.10b)
¥

_@é{ff :agfjfskfieszk o8 ,33 oS 9’3’ (C.IGC)

dvy  Jug

= (C.10d)

a N . . -

-6—;?« :wa303k38k3fk Sinz 133 Sin 93 (C].GE)
Y

ou 5

gﬁ =ay03k;e™* sin 35 cos By, (C.10f)
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= (106

8w3 dug

T (C.16h)

i}af =ag0skse’® s sin b, (C.101)

For a short wave modulated by M long wave components, the modulated surface

elevation is the sum of the modulations by all A7 long wave components,

af -
T = a3 (1 4 Z b COS E?m) cos{fy}, (C.11}

ezl
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where
- Af M
fy = kg, w4+ k:gyy — o3t + 03 + Z E36m pom Sin i, + Z AmEmsinty,, {C12a)
Am = AmTons Am = gﬁ’_{ (C}-?b>
J3
The modulated dvnamic pressure is, then,
p3 o ifk.
+ z = as€ [{l—a——lCms&)cmé’gwg;u sin f; 311193] (C.13)
Pg
with
A JA41 )
C=5"|rm = A TuKom + A0 0t Y pong (ki) | {C.14a)
[T fxz
M
S=3Y [~rmdm + A 00t = AL Hom
m=]
J1 7
_Amkgz Z ";f,nj(kmﬂ')] . (C14b)
i=0
O sinh[kp, (z -+ b)) ) coshlk,(z + hj]
A = =2 Ho = . Ky = . 14
o5 e cosh kb ’ cosh k,,h (C.1e)

The modulated velocity components are in the same form as {C.5), but with

ar f J+1
Cy =Y | Tmcos By +cos By > pmj(kmz)J} . (C.15a)
m=1 j=0
Mo J+1 .
C" = Z Tm sin 33 + sin tﬁm Z P (kmz);' : (Cl:‘b)
==t | 3=0
M O J+1 )
=5 o (k2 (C.15¢)
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EES

A
L i A 32 7 i3]
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Af J+1
Sm = Z Tin T Z(J + 1}1”17:}'(’{;7?1:)] : (C13f)
=l F=0

The modulated acceleration components can be calculated as (C.7), but with the

summation over all the long wave components,

Af
13 Tt k‘m -
ugl’ :Z dmg Kom €08 3, cos B,y (C.16a)
rras ] Om
Af
amkm - .
oV =S DI e sin 3, 08 O, (C.16b)
m=1 T
A
a?’n km .
w(l” = Z g H,, sint,,, {C.16¢)
m=1 Ym
M J .
fo =z~ Z Ay COS 8, + 22 cO8 6, Z Yim(km2)' | 7, (C.16d)
me=l J==0

M 7
By = kapx 4 k3py — o3t + 03 + Z [kgam sin f,, Z pjm(kmz)"’} . (C.16e)

mz] j=0



APPENDIX D

NOMENCLATURE

The following symbols are used in this thesis.

&

(Cy, 0y O7)
B.C.p.q
Co

Cp

&, Txﬁsb
P

h

g

Sm: b

wave amplitude

total acceleration vector
Gamma spectrum parameter
Bernoulli constant

drag coefficient

inertia coefficient

peak wave frequency

cut off frequency

Phase modulation parameters

velocity potential

coshlk{z+h)]

cosh kh
COS(J]_ - dg)

sinhjky (z+h}]
sinh kih

pressure head
modulation parameters
modulated phase for potential

modulation phase of elevation

sinhlky (2-+h) sinhiky(z+h 1
cosh kyhcoshkoh

water depth

gravity acceleration

resultant and free-wave spectral density function,respectively
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wave radian frequency

wave number vector

time

Cartesian coordinates

vertical position

long wave steepness

wave length ratio of short to long wave

spectral bandwidth parameter

spectral steepness

frequency ratio of short to long

linear wave phase

first- and second-order surface elevation, respectively
velocity vector

wave propagation angles

initial phases

standard deviation of surface elevation

standard deviations of drag and inertia wave forces

ratios of wave forces standard deviations (three different methods)
ratios of wave forces standard deviations for different cut off
frequencies

ratios of wave forces standard deviations of Wheeler to HWAl



