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NOTATION

Cross-sectional area.

Displacement deformation transformation matrix.

Transformation matrix from global displacements to
element deformations.

Shear area.

Embedded shaft area of the pile.

Gross end area of the pile.

External cross-sectional area of the member.
Internal cross-sectional area of the member.
Added mass matrix.

Updated added mass matrix.

Projected area of member.

Amplitude of the nth wave components.

Unit vectors.
Linear strain displacement transformation matrix.

Strain displacement transformation matrix at
beginning of step.

Damping matrix.
.Constitutive matrix.
Radiation damping coefficient.

Numerical constant.




Convergence ratio of iteration i.
Inertia coefficient

Horizontal drag coefficient.
Longitudinal drag coefficient.
Water depth.

Effective water diameter.

Infinitesimal displacement increment.

Infinitesimal increment of resisting forces.

Direction factor.
Rotation matrix from xx to xx4+] about xy.

Increments of gap element deformations along the
local x, y, and z axes, respectively.

Components of increment of tangential resistance in
the x and y directions.

Increment of normal force in the gap element.

Increment of displacement in the tangential direction
of the slip circle for the gap element.

Increment of displacement in the radial direction of
the slip circle for the gap element.

Force increment in the radial direction of the slip
circle of the gap element.

Force component in the tangential direction of the
slip circle of the gap element.

Volume increment.

Member diameter.
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Green’s strain in the x direction.
Young’s modulus.

Linear strain increment.

Tangent Young’s Modulus

Accumulated energy absorbed within the hysteresis
loops.

Cumulative flexural energy at plastic hinges.
Cumulative inelastic stretch energy.

Reference flexural energy for failure.
Reference inelastic stretch energy for failure.
Step factor.

Shear flexibility matrix.

Axial strength at yield surface i.

Tangential strength of the slip circle of the gap
element.

Unit skin friction along the pile shaft.

Numerical constants.

Hydrostatic force at the end of the member.
Element relative forces in the local coordinates.
Element forces.

Force components radial and tangential to the slip
circle.

Shear modulus.



G Amount of stiffness modification.

G, Soil shear modulus.

G, Projection of stiffness matrix into a subspace.

Gravity acceleration.

H Horizontal component of tension at top end of
catenary.

H((w) Transfer function.

H, Projection of mass matrix into a subspace.

H, Wave height.

7 Number of iterations for convergence.

Iy, I, Cross-sectional moment of inertia about the local y
and z axes, respectively.

1o, I3 Cross-sectional moment of inertia about the local 2
and 3 axes, respectively.

) Unit vector in the global X direction.
I, Iteration at which prediction of convergence begins.
J Cross-sectional torsional moment of inertia.

J Unit vector in the global Y direction.

K, Scalar stiffness.

K Structure stiffness matrix.
K* Effective stiffness matrix.

k, Total element stiffness matrix.

k Material element stiffness matrix.
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Geometric stiffness matrix.
Structure tangent stiffness.

Element tangent stiffness matrix in the local
coordinates.

Structure initial stiffness.
Structure secant stiffness.
Modified structure stiffness matrix.

Element external geometric stiffness (truss bar
form).

Element external geometric stiffness (invariant
form).

Element internal geometric stiffness.

Linear element stiffness matrix in the local
coordinates.

Element stiffness matrix in the global coordinates.
Unit vector in the global z direction.

Plastic stiffness after yield surface i.

Axial stiffness of the complete inelastic beam column

element before yield surface i.

Torsional stiffness of the complete inelastic beam
column element before yield surface i.

Flexural stiffness of the complete inelastic beam
column element before yield surface i.

Stiffness of tangential resistance of the gap
element.



Tangent stiffness of the normal force deformation
relationship of the gap element.

Element tangent stiffness matrix in the global
coordinates.

Rotational springs around the global axes.

Structural stiffness matrix at the beginning of the
step.

Hydrodynamic added mass coefficient.
Stiffness before yield surface i.
Element geometric stiffness matrix.
Current element length.

Undeformed element length.

Cosine the angle between the local axis i and the
global X axis.

Length of plastic hinge.

Additional hinge length.
Catenary length.
Mass matrix.

Cosine the angle between the local axis i and the
global Y axis.

Torsional moment about the local x axis.

Bending moment about the local y and z axes,
respectively.

Bending strength of the hinge at yield surface 1.

Fully plastic moment. -
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Unit normal to xk and xy4i-

Cosine the angle between the local axis i and the
global z axis.

Unit normal to yield surface i.

Shape function matrix.
Shape function vector.

Derivatives of shape functions.

Number of pile load cycles required to cause 50
percent degradation in strength.

Maximum number of iterations.

Current element axial force.

Lateral load deflection curves for PSAS element.
Fully degraded strength of PSAS element.

Dynamic pile resistance.

Static (at reference rate of load application) pile
resistance.

Internal fluid pressure.

External water pressure.
Element nodal forces in the local coordinates.

Lateral load on a cantilever corresponding to
flexural yield surface i.

Element displacements.

Element internal resisting forces in the global
coordinates.



Axial load deflection at the pile tip.
Axial pile capacity.

End bearing resistance.

Unit end bearing capacity.

Displacement, velocity, and acceleration in the
global coordinates, respectively.

Unbalanced forces.

Static internal resisting loads.
External loads.

Total load vector.

Scalar displacement

Scalar force.

Orthogonalized vector of unbalanced loads.

Orthogonalized vector of external loads.

Local element coordinates in the isoparametric
formulation.

Norm of unbalanced loads.
Unbalance measure.

Vector of wave loads.
Step size.

Local element coordinates for the isoparametric
formulation.
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Initial stress matrix.

Initial stress vector.

Stress vector.

Normalized Resistance.

Current stiffness parameter.

Wave height spectrum.

Time.

Transpose of a vector or matrix.
Direction cosine matrix.
Coordinate transformation matrix.

Transformation matrix at the middle of step
orientation of the element.

Direction cosine matrix of element local axes for
configuration k (beginning of step).

Direction cosine matrix of element local axes for
configuration k+l (end of step).

Direction cosine matrix at middle of step.
Torsional strength at yield surface i.

Axial load deflection curve at the pile shaft.

Pile shaft resistance.
Axial pile shaft compressive strength.

Axial pile shaft tensile strength.



Tension in catenary.

Axial pile shaft residual compressive strength.
Axial pile shaft residual tensile strength.
Standard (or reference) rate of pile loading.
Actual rate of pile loading.

Tension at end points of the catenary.

Wave period.

Displacement components at the beginning of the step.
Displacement increments.

Derivatives of displacement increments.
Unbalance tolerance.

Water particle velocities.

Water particle accelerations.

Mean wind velocity.

Element displacements in local coordinates.

Segment value.

Normalized deflection.
Shear wave velocity of soil.
Segment value of critical vector.

Displaced volume




Local displacements of gap element.

Displacement components radial and tangential to the
slip circle.

Element deformations in the local coordinates.
Vector of internal degrees of freedom.
Weighting factor for convergence rate.

Weight per unit length of catenary.

Local cartesian coordinate (longitudinal axis for
beam or truss element).

Local x axis at configuration k (beginning of step).

Local x axis at configuration k+l (end of step).

Irregular sea amplitude for frequency w .

Trial eigenvectors.

Global cartesian coordinate.
Local cartesian coordinate.

Yield surface i.

Deflection defining cyclic degradation
characteristics for piles.

Vessel motion for frequency w .
Global cartesian coordinate.
Local cartesian coordinate.

Axial pile shaft displacements required to define the
compressive cycle of the T-Z curve.




Axial pile shaft displacements required to define the
tensile cycle of the T-Z curve.

Correction factor for the Hilbert-Hughes-Taylor
method for step-by-step time integration.

Governing event factor.

Mass proportional damping factor.
Scaling factor for load increment.
External load increment.

Load increment for step i.

Angle between local x axis in configuration k

(beginning of step) and local x axis in configuration
[k+1] (end of step).

Angle between Fy and the tangential resistance of the
gap element.

Constant used in Newmark (3 method.
Initial stiffness damping constant.
Tangent stiffness damping constant.

Rotations about the local x axis (longitudinal axis)
at the element ends i and j.

Average longitudinal rotation.
Loading rate factor.

Line search method scaling factor.
Longitudinal rotation matrix.
Numerical constant.

Unit weight of sea water.
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Unit weight of internal fluid.

Equilibrium error at mid step.

Element deformations due to scaled displacement
increment (event-to-event dynamic solution strategy).

Element deformations due to unscaled displacement
increment (event-to-event dynamic solution strategy).

Internal energy increment.
Increment of internal resisting forces.

Finite displacement increment.

Time step.

Increment of external loads.

Increments in element nodal displacements and forces
referred to the global coordinate axes.

Increments in nodal displacements and forces referred
to element local axes.

Increments in nodal relative deformations and forces
referred to element local axes.

Extension in the local x direction.

Total load increment.

Displacement increment in iteration i.

Conjugate displacement increment in iteration i.
Disﬂ]acement increment due to unbalanced load.

Displacement increment due to external load.



Effective load increment.

Displacement, velocity and acceleration increments in
global coordinates.

Yield extension.

Nonlinear strain increment.
Sea surface elevation.
Rotation about the y axis.
Rotation about the z axis.

Plastic rotation at failure.

Critical curvature.

Angle with horizontal at ends of catenary.
Catenary angle at any point.

Angle between x axis and wave direction.
Wave number.

Cyclic degradation factor for PSAS element.
Lamé’s constant.

Wave length.

Coefficient of friction.

Energy ductility ratio.

Poisson’s ratio.

Soil mass density.

Pile mass density.




Water mass density.

Specified shift for subspace evaluation of
eigenvalues.

Shear deformation terms for the local axes 2 and 3,
respectively.

Angle of twist about the local x axis.

Angle between member axis and vertical axis.

Angle between member axis and global axis.
Eigenvector matrix.

Flow potential function.

Stream Function.

Angular frequency.




1.0 INTRODUCTION
1.1 Purpose

This manual provides a description of the theoretical basis of the
SEASTAR program. The mathematical formulations implemented in major
aspects of the code are included. Due to the wide variety of topics
discussed in this manual, the complete details of some algorithms are not
provided and reference is made to the appropriate publications. For
details of the program usage and descriptions of the input parameters,

the user is referred to "SEASTAR Users’ Manual."
1.2 Scope

This manual is organized into eight chapters. Chapter One is the
introduction. Chapter Two describes the linear and nonlinear static
solution algorithms used in SEASTAR. Chapter Three describes the dynamic
solution algorithms. The eigensolution methods are described in Chapter
Four. The theoretical formulation of the SEASTAR finite elements is

given in Chapter Five. Chapter Six describes the different types of

element loadings and the methods used to evaluate these loads. Chapter
Seven deals with the available options for the calculation of wave and
current kinematics and the wave-current interaction. Finally, Chapter

Eight deals with the response of marine vessels to irregular seas.




2.0 SEASTAR STATIC SOLUTION
2.1 Introduction

A large number of solution strategies are available for solving nonlinear
structures. The choice of a particular solution strategy depends on the
characteristics of the problem. Many different types of behavior may be
present in nonlinear structures, including stiffening, softening and
instability with different post-buckling characteristics. The most
efficient and reliable strategy for solving any nonlinear structure is

obtained by anticipating the structure response and knowledge of the

characteristics of different solution strategieé. The description of the

nonlinear solution scheme given in this chapter is directly based on

Simons (1982) (a study sponsored by the National Science Foundation).

Sections 2.2 through 2.9 introduce the terms and concepts most commonly
used in static nonlinear analysis. Sections 2.10 to 2.26 describe the

solution scheme implemented in SEASTAR.




2.2 Definitions
2.2.1 Notations

For any type of nonlinear or time domain finite element analysis, the
solution is carried out in an incremental fashion. In each increment,
the solution starts from a known deformed state (Configuration 1), which
is at equilibrium, and tries to advance to another state

(Configuration 2) which is also at equilibrium. A1l the pertinent
variables, such as displacements and forces, at Configuration 1 have the
superscript 1 and those at Configuration 2 have the superscript 2. The
increment by which the variable changes has the prefix A; thus, the

incremental relationship for a vector r is written as

where the underscore indicates a vector or a matrix.

When a variable does not have a superscript, it should be taken as

otherwise defined.

The cartesian coordinate system is used throughout the manual with X, Y
and Z being the global cartesian axes which are fixed in space. Another
set of local coordinates is also used which varies from one element type
to another. The set of local coordinates could be cartesian (x, y, 2) or
natural coordinates (r, s). The local axes will be defined as each

element type is discussed in Chapter 5.
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2.2.2 Displacements

For analysis by the Displacement Method, the primary unknowns of the
problem are a number of kinematic degrees of freedom (DOF). These
degrees of freedom are typically translational and rotational
displacements at nodes of the structure, and will be referred to as the
structure displacements, or simply, the displacements. The complete set
of displacements can be arranged in a displacement vector in the global
coordinates, r. Each element has associated with it a subset of the

- structure displacements, typically the displacements at the nodes to
which the element connects. These are the element displacements, which
may be arranged in an element displacement vector in the global

coordinates, q.

The current displacements are the most recently calculated displacements.
A displacement increment is a finite ( Ar) or infinitesimal (dr) change

in the displacements.
2.2.3 Structure State

Each set of displacements corresponds to a deformed state, for the
structure as a whole and for each element. The element deformations are
related to the element displacements by shape functions which ideally
(although not necessarily) ensure that geometric compatibility is
satisfied. Element stresses or stress resultants (element actions) are
related to corresponding strains or strain resultants (element
deformations) by constitutive relationships of a variety of possible

types.
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For any set of element actions, there is a set of element resisting
forces, Q, which satisfies element equilibrium. These forces are
external forces exerted on the element, corresponding to the element
displacements. The term "force" includes both translational forces and
moments. The element forces can be assembled into a vector of structure

resisting forces, Rj.

The structure displacements, element deformations, element actions and
structure resisting forces constitute the structure state. The process
of calculating the structure state for the current displacements is
termed state determination. The calculation begins at a reference state

and proceeds in the following steps:

1. The displacement increment from the reference state to the

current state must be given.

2. The element deformation increments are calculated using the shape

functions.

3. The element actions in the current state are calculated,
considering the reference state, the deformation increments, and

the constitutive relationships.

4. The element resisting forces are calculated by equilibrium and

assembled to give the structure resisting forces.

The current state is an equilibrium state if the structure resisting
forces are equal to the external forces on the structure, RE. The
external forces consist of all applied forces and reactions acting
externally on the structure, one force for each structure displacement.

In a numerical solution, an exact equilibrium state will never be
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reached. Rather, a converged state will be sought in which the
equilibrium error is acceptably small. A measure of the equilibrium

error is provided by the vector of unbalanced forces, Ry, given by:
R, = R.-R (2-1)

The criterion for convergence is commonly expressed as a tolerance on a

norm of Ry (e.g., Euclidean norm, maximum absolute value).

If an iterative solution fails to arrive at a converged state, it may be
necessary to restore the previous converged state and attempt a new
solution. A converged state which is saved to permit restoration is

called a backup state.
2.2.4 Stiffnesses

The structure tangent stiffness (or tangent stiffness matrix), Ky, is
defined by:

dR, = K, dr (2-2)

in which dr is an infinitesimal increment of displacement and dRy is the
corresponding increment of resisting force. The process of calculating
the tangent stiffness in any state may be termed linearization. It is
performed by calculating and assembling the tangent stiffnesses, k1, of
all the elements. The tangent stiffness in the initial undeformed state,
Ko, is the initial stiffness. A stiffness, K5, which satisfies the

finite relationship
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is a secant stiffness. In Eq. (2-3), AR, 1is the increment in internal

resistance.
2.2.5 Equilibrium Equations

For a linear structural analysis, the structure displacements are

typically found by solving equilibrium equations of the form:
Kr =R | (2-4)

where K is the stiffness matrix of a linear structure in which r defines
the total displacements and R is the total load vector. For nonlinear

analysis, the displacements are generally calculated in increments,

freqdent]y (but not necessarily) by solving equations of the form:

K. Ar = AR

in which AR is the total load increment.

2.2.6 Loads

Displacement of a structure may be caused by applied loads of a variety
of types. A static applied load is conveniently constructed as a
combination of a number of separate load patterns, each multiplied by a
Toad pattern magnitude. The set of load pattern magnitudes constitutes
the Toad magnitude. A load pattern may define nodal loads, element

Toads, initial strain loads, or imposed displacement loads.




Nodal loads and element loads may consist of point forces, linear forces,
surface forces, and/or body forces. A set of forces constitutes a nodal
Toad if its contribution to the load vector, AR, can be determined
without considering the stiffness and/or strength properties of the
elements (e.g., point forces applied directly on a node). A set of

~ forces constitutes an element- Toad if the element properties must be

considered in setting up ASR (e.g., distributed load along the'1ength of

a beam element, which produces "fixed end" forces on the nodes). Nodal
and element loads contribute forces directly to both the load vector,

AR, and the external force vector, Rf.

Initial strain loads, (e.g., temperature change) contribute to the load
vector, AR, but do not contribute directly to the external force
vector, Rg. As with element loads, the contributions to AR depend on

the stiffness and/or strength properties of the elements.

With imposed displacement loads, displacement increments are specified in
particular directions at particular nodes. That is, in the equilibrium

equation:

K, Ar = AR (2-6)

T S0

certain terms in Ar are specified, and the corresponding terms in AR’

are initially unknown. This is taken into account in the solution of the
equilibrium equations. The nodal forces corresponding to the imposed
displacements become external forces (in effect, reactions) on the

structure, and hence contribute to R, .




A load pattern may be fixed or configuration dependent. The loads in a
fixed pattern are independent of the displacements (e.g., forces with

fixed magnitudes and directions). Configuration dependent loads vary as

the structure deforms (e.g., hydrostatic pressure).
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2.3 General Concepts and Techniques
2.3.1 General

A number of concepts and computational techniques are of general use in
nonlinear structural analysis. Several of these are reviewed in this

section.
2.3.2 Scalar Displacement and Scalar Force

The projection of a displacement vector, r, on a unit vector, b, in the
displacement space defines a scalar displacement, rp, along the direction
b. That is, '

re = b’ r (2-7)

Similarly, the projection of a force vector, R, on a unit vector b in the

force space defines a scalar force along the direction b. That is,

R, = b" R (2-8)

2.3.3 Scalar Stiffness

A scalar stiffness, Kp, is the ratio of a scalar force to a scalar

displacement. That is,

bl AR
by Ar

(2-9)
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in which by and by are unit vectors. Usually, by and by will be the
same. The direction of interest will usually be the direction of either

the displacement increment or the load increment.
2.3.4 Stiffness Ratio

A measure of the change in stiffness during an analysis can be expressed
as the ratio of a scalar stiffness in the current state to a scalar

stiffness in the initial state.

Bergan [1978, 1979] introduced the concept of a current stiffness
parameter, Sp, to help control the nonlinear solution strategy. This

parameter has the following properties.

The initial value of Sp is 1. Values greater than 1 indicate
that the structure is stiffer than it was initially, and values

of less than 1 indicate that it is more flexible.

Generally, for a stable structure Sp is positive, whereas for an

unstable structure it is negative.

Where the load magnitude reaches a local maximum, the value of Sp

is zero.

The rate of change of Sp is related to the nonlinearity of the
response. For structures that are nearly linear, Sp changes
slowly, whereas for structures that are highly nonlinear, Sp

changes rapidly.




2.3.5 Rank One Stiffness Modification

A rank one stiffness matrix can be added to a structure stiffness matrix,
K, to change the stiffness in a particular direction, b, by an amount

G . The modified stiffness matrix, Km, is given by:

- K+ T b0l

—_m

The inverse of the modified stiffness matrix is given by the

Sherman-Morrison formula as:

bT K—l
TK b

(2-11)

Higher order modifications to a stiffness matrix can be made by a series

of rank one modifications.




2.4 Newton-Raphson Iteration
2.4.1 General

The Newton-Raphson (NR) iteration scheme is well known as a method for
the analysis of nonlinear structures. It is reviewed here as a basic
solution scheme to introduce the concepts and operations found in the

more general methods to be discussed later.
2.4.2 Algorithm

If the current state is an equilibrium state, the iterative sequence for

NR iteration is as follows: (Figure 2-1):
1. The tangent stiffness is formed in the current state.

2. A load increment is added to the structure. A displacement

increment is found by solving the equilibrium equations.

3. A state determination is carried out, and the structure resisting

force is calculated.

4. The unbalanced force is calculated. Convergence is checked. If

converged, go to Step 1. If not converged, continue.
5. The tangent stiffness is formed in the new current state.

6. The displacement increment due to the unbalanced load is

calculated.

7. A state determination is carried out, and the structure resisting

force is formed.
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. 8. The unbalanced force is calculated. Convergence is checked. If

converged, go to Step 1. If not converged, go to Step 5.

2.4.3 Phases

There are two phases in the above sequence. In the advancing phase
(Steps 1 to 4), a load increment is applied. In the correcting phase
(Steps 4 to 8), the load magnitude is kept constant and the solution

iterates in search of a converged state.

2.4.4 Tasks

The solution scheme can be separated into four distinct tasks, as

follows, each of which is performed in both phases.

1. Linearjzatjon. The tangent stiffness is formed in the current
state.

Displacement Prediction. A displacement increment is obtained by

solving the equilibrium equations.

State Determination. The element deformation, element actions,

element resisting forces, and structure resisting forces are
calculated.

Convergence Check. The external force vector is formed, and the

unbalanced force vector is checked for convergence.




2.4.5 Weaknesses

The basic NR scheme, although effective in many cases, is not necessarily

the most economical solution scheme and does not always provide rapid or

reliable convergence. Some weaknesses of the method are as follows:

1.

Linearization

The computation involved in linearization and equation solving
may be Targe. When the solution is nearly converged, only small
changes will take place in the tangent stiffness, and a new

linearization may not be needed.

. Load Increments

The size of each load increment must be predetermined. Because

the structure stiffness varies throughout the analysis, equal
Toad increments will produce unequal displacement increments and
unequal unbalanced forces. A load increment that produces
reasonable displacements with fast convergence initially may
predict large displacement increments with slow or nonexistent
convergence as the structure yields and becomes flexible. A
substantial amount of trial and error may be needed to determine

the appropriate load increments.
Step Directi

The analyst will usually have no alternative but to specify

positive load increments. In many structures, the strength can




reach a maximum and then decrease. In order to follow an
equilibrium path in such cases, negative load increments must be

applied.
Constant load Iteration

The Toad is kept constant during iteration. If the structure
strength reaches a maximum and then decreases, it is possible for
the applied load to be greater than the structure strength, in
which case convergence is impossible (at least near the predicted

displaced state).

Sudden Nonli it

In some problems, distinct "events" occur that drastically alter
the stiffness (for example, gap closure). If such an event

occurs in either the advancing or correcting phase, the

calculated displacement increment may be a poor estimate of the

actual increment and results in a large unbalance.

Nonconvergence

If the analysis does not converge in a specified number of
iterations, it is necessary either to quit or to continue from a

nonconverged state.
Path [ lent State Det inati

The structure state is updated at each iteration, and

nonconverged states are thus used as reference states. Because




of the path dependent behavior of inelastic materials use of

nonconverged reference states may cause the calculated material

response to differ from the true response.

2.4.6 Variations on NR

To overcome some of the weaknesses of NR iteration, a number of
modifications of the basic scheme have been proposed. These

modifications can be classified into four categories, as follows:

Variations in the stiffness formation.
Variations in the advancing phase.

Variations in the correcting phase.

Special Togic in case of large unbalance or nonconvergence.

The modifications are discussed in the following sections.




2.5 Variations in Stiffness Formation

2.5.1 Modified Newton Methods

If the analysis is not highly nonlinear, the structure stiffness will not
change much between iterations. It is then possible to use the existing
stiffness matrix to predict the displacement increment. Displacements
predicted in this way may not converge as fast as those predicted with an
updated stiffness, but because each iteration is cheaper, more iterations
can be performed for the same cost. Variations on the NR scheme that do
not reformulate the stiffness every iteration are commonly termed
"modified Newton" methods. Some of these are described below and

illustrated in Figure 2-2.

In initial stiffness iteration, the initial stiffness matrix, Ko, is used
for all the displacement increment calculations. In constant stiffness
iteration, the stiffness matrix is updated for the advancing phase and
then kept constant during the iteration. Other variations include (a)
updating the stiffness in the advancing phase and at specified iterations
during the correcting phase, and (b) reforming the stiffness when
necessary according to some specified criteria (e.g., keep K constant

after the solution converges to some preliminary tolerance).
2.5.2 Quasi-Newton Methods

An alternative to reformulating the stiffness every iteration or keeping
the stiffness constant is modifying the stiffness in some way. This is
the idea behind "quasi-Newton" methods. Modifications are typically done

so that the following guidelines are met.
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The modified stiffness matrix, Km, for any iteration, i, should
be a secant stiffness matrix for the displacements calculated in

the previous iteration.

If K is symmetric and positive definite, Km should also be

symmetric and positive definite.
3. Displacement increments using Ky should be cheap to calculate.

There is extensive literature on methods of stiffness modification, most
of it from fields other than structural analysis. The method which has
received the most attention for structural analysis is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. (See Mattheis & Strang
(1979).) It proposed modification of the stiffness matrix by addition of
a rank two matrix. Rank one updates may not be numerically stable, and

hence are not popular.
BEGS Correction

The BFGS modification is a rank two update. The stiffness is changed in
two directions. The first of these is given by the change in the

resisting force for the last iteration.

The second stiffness change is in the direction of the unbalanced force.

The inverse of the modified stiffness can be found by two applications of

the Sherman-Morrison formulas, as discussed by Dennis and More (1977).




2.6 Variations in the Advancing Step
2.6.1 Variable Load Magnitude

Strategies that automatically select the load increment during the
analysis have been developed to avoid having to specify the load
increments in advance. Three strategies are described. In the first
two, the aim is to keep the unbalance at the end of the advancing phase
constant in each step. In the third, the aim is to keep the number of

iterations in each step constant.
Bergan’s Current Stiffness Parameter

Bergan (1978) uses the current stiffness parameter, Sp> as a guiding
quantity for selecting the load increment. If the Tlinearization is
regarded as a first order Taylor series approximation, the truncation
error in the advancing phase varies with (a) the load increment and (b) a
norﬁ measure of the second derivative of r with respect to the load

magnitude.

Because Sp is an approximation to the first derivative of the
displacements (with respect to the load magnitude), the change in Sp
divided by the change in load magnitude is an approximation to the second
derivative. Hence, the truncation error will be approximately constant
in each step if the load increment is chosen so that the change in Sp is

constant.

This method of step selection will result in small steps where the

solution is strongly nonlinear and large steps in nearly linear regions.
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Scaling Based on Unbalance

Step scaling based on the unbalance can be done directly if a state

determination is added to the process. In this method, a trial step is

taken, a state determination is performed, and the unbalance is

calculated.

If the unbalance is too large (based on some tolerance), the

step is repeated with a reduced load increment.

The procedure is as follows:

1.

Select a load increment (based on any method).

Solve for the displacement increment.

Perform a state determination.

Calculate the unbalance.

If the unbalance is greater than the specified tolerance, scale

the Toad increment, according to

where

|Rul

a, = (2-12)

scale factor for load increment.

unbalance tolerance.

norm of unbalanced load.
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' and repeat from Step 3. If the unbalance is less than the

tolerance, enter the correcting phase.

Because the unbalance varies approximately quadratically with the
displacement increment (based on the truncation error), a linear scaling
will, in most cases, be sufficient to reduce the unbalance below the

allowable tolerance.
Scaling Based on Number of Iterations

A method in which the load increment is adjusted based on the number of
iterations has been suggested by Crisfield (1981). The magnitude of each
step (except the first, which must be specified) is calculated as follows

for Step i:

number of iterations for convergence in Step i-1.

load increment for Step i-1.

desired number of iterations for convergence.
2.6.2 Displacement Control

An alternative to varying the load increment is to control the size of

the displacement increment directly. Various measures of the




displacement increment can be controlled, including (a) a single

displacement degree of freedom, (b) a scalar displacement, and (c) the

"arc Tength" of the increment.

Single Degree of Freedom Control

Haisler and Stricklin (1977) describe a step-by-step method without
iteration in which a selected displacement (the controlled displacement)
is increased by a specified amount in each step. In any step, the
unbalanced Toad at the beginning of the step, plus some load increment,
is applied. The magnitude of the load increment is initially unknown and
is chosen to increase the controlled displacement by the specified
amount. Because the displacement vector for any step consists of two
parts, one due to the load increment and one due to the unbalance, the
displacements cannot simply be scaled linearly to meet the displacement
constraint, and a special computational procedure is needed to determine
the required load magnitude. For details of the procedure, refer to
Haisler and Stricklin (1977).

Scalar Displacement Steps

The method described in the preceding section has been presented in a
generalized form by Powell and Simons (1981). In this method, the
controlled displacement is not limited to a single DOF but is a scalar

displacement characterized by a unit vector, b.
Arc Length Steps

An alternative method of advancing the solution has been proposed by
Riks (1974) and Crisfield (1981) and discussed by Ramm (1980). The "arc




length" of the step, 5, is defined by the Euclidean norm of a vector
containing both the load increment and the displacement increment. That
is,

2 172

s = (af + ArT Ar) (2-13)

in which

Ar displacement increment.

o load increment.
The arc length, in geometric terms, is an approximation to the length of

the step in the displacement-load space.

Because both the load increment and the displacement increment are

included in s, the size of the load increment should be determined
primarily by the largest of these quantities. When the structure is very

| flexible, the displacements will control the size, and when the structure

is very stiff, the load increment will control.

This choice of load increment has some weaknesses, however. First, the
quantities that make up the arc length do not have the same units (one is
a load term and the rest are displacements). Because of this, the
relative influence of the load term depends on the units which are
chosen. Second, since the arc length contains all degrees of freedom,
Tocal nonlinearities tend to get lost or diluted, especially in analyses
with many DOF.
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From numerical experience, Crisfield recommends that the load increment
not be included in the calculation (1981). The resulting strategy is
then a displacement controlled method using the Euclidean norm of the

displacement increment to control the size of the load increment.

Choice of Step Direction

In an analysis of a buckling structure, the load magnitude may increase

up to a maximum value and then decrease as the structure continues to
deform. This will be termed load reversal. For load stepping, negative

Toad increments must be applied to follow the equilibrium path.

For displacement stepping a similar problem may occur, in which the
controlled displacement reaches a maximum and then decreases. To
continue the analysis past this displacement reversal, it is necessary to

change from positive to negative displacement steps.

In general, if the controlled quantity (load or displacement) does not
experience a reversal, then the step direction can simply be chosen as
positive in each step. If, however, the controlled quantity is subject
to reversals, a procedure to choose the step direction is necessary. Two
procedures are considered here, the first based on the current stiffness

parameter and the second on continuity of the displacement increment.
Current Stiffness Parameter

The current stiffness parameter, Sp> is used by Bergan to choose both the
load magnitude and the step direction. When the load magnitude changes
direction, Sp passes through zero. Monitoring Sp enables the direction

of the load increment to be chosen as follows:




1. Initially Sp is equal to one and the load increment is positive.

2. As the stiffness deceases, Sp becomes smaller. As long as Sp

remains positive, the load increment is chosen as positive.

3. If Sp passes through zero and changes sign, the load increment is
chosen as negative, until Sp passes back through zero and becomes

positive.
Continuity

Crisfield (1981) describes a method for choosing the step direction based
on continuity of the displacement increments. The idea is that in order
to keep the solution from going back on itself, consecutive displacement
increments should be in the same direction. In each step, the
displacement direction that makes the smaller angle with the previous

displacement increment is the one chosen.
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2.7 Variations in the Correcting Phase

As discussed in Section 2.4.6, the basic NR scheme has some weaknesses in
the correcting phase. First, the iteration is done with constant load,

which may lead to divergence. Second, path-dependent state determination
is used, which can introduce errors in the material response. Third, no
provision exists to alter the magnitude or direction of the displacement

increment found by solving the equilibrium equations.

Several variations iniihe correcting phase have been proposed to overcome
some of these weaknesses. Instead of iterating with constant load,
schemes have been devised that (a) do not iterate, (b) do not iterate
when the stiffness is very low, and (c) iterate with constant
displacement. Schemes that alter the magnitude and/or direction of the
calculated displacement increment in order to aid convergence have also
been developed. Among these schemes are the line search methods to
select the magnitude and the conjugate Newton method to alter the
direction. Also, instead of path dependent state determination, path
independent state determination is easily incorporated. These variations

are discussed below.
2.7.1 No Iterations

The scheme proposed by Haisler and Stricklin (1977) is performed without
iteration. The solution is carried out step-by-step with the unbalanced

load and an increment of the load applied each step.

Bergan (1978) suggests that iteration be suspended only near critical

points. 'He recommends the use of the current stiffness parameter, Sp, as

a criterion for iteration, and iterations are performed only if Sp is not




near zero. Because Sp is a measure of the scalar stiffness of the
structure, it will be close to zero when the structure stiffness is very

Tow.

In schemes with iteration, it is usual to iterate until the unbalanced
Toad is small so that only small unbalances are carried over from step to
step. In schemes that do not iterate, substantial unbalances can be

carried over, which may contribute to a drift from the equilibrium path.
2.7.2 Displacement Control

Methods that control displacements can be used in the correcting phase,
and can be thought of as a special case of the method described in
Section 2.6.2 for controlling the displacement increment in the advancing
phase. In the correcting phase, iteration with some scalar displacement
held constant corresponds to specifying the increment in that scalar

displacement to be zero.

An important point to note is that if iteration is done at a constant
displacement, the load magnitude varies during the iteration. For a
softening structure, the load magnitude will typically decrease during
iteration. For structures that reach a maximum load, the problem of
iterating at a load magnitude greater than the structure strength is
overcome, because the load magnitude is automatically reduced during the

iteration.
2.7.3 Path Independent State Determination

In NR iteration, the state is updated in each iteration, so that the

state determination is path dependent. It has been noted that path
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dependent state determination can lead to significant errors if the path
followed is far from the equilibrium path. An alternative scheme is to

use path independent state determination.

If the element strains increase progressively during the iteration
sequence, there will usually be little difference between the final
states calculated by the two schemes. However, if the strains increase
in early iterations and then decrease, the path dependent scheme may
incorrectly unload yielded elements. Consider, for example, an analysis
of a softening structure with constant displacement iteration. The load
magnitude typically decreases in the iteration phase, although the
accumulated load increment from the beginning of the step is positive. A
path-dependent scheme will allow unloading of yielded elements as the
load decreases, whereas a path independent scheme will not because it is
based on the accumulated displacement increment. Path independent state

determination is thus recommended for displacement controlled analysis.
2.7.4 Line Search

The displacement increment found by solving the equilibrium equations

does not necessarily give the best estimate of the equilibrium state.

Instead, some multiple of the displacement increment, B°Ar , may be

better. In line search methods, B is chosen to minimize some measure

of the unbalance, usually by a successive trial procedure.

Matheis and Strang (1979) discuss the use of a line search routine in
conjunction with the BFGS stiffness modification scheme. The technique

can be used with any method for choosing the displacement increment.




The Tine search is carried out as follows:

Phase 1: Upper and Tower values of R are sought which bound a zero

value of unbalance.

A measure of the unbalance, R,, at the beginning of the step
(B”
(B~

0) and for the calculated displacement increment

1) is calculated as follows:

R,(B) = ar” R, (B") (2-14)

—-U

R.(B") is a measure of the external work that the unbalanced

load does on the structure.

If the unbalance measures are of opposite signs, the zero is
bounded, so enter Phase 2. If the unbalance measures are of
the same sign, the double the step size (B° = 2) and
recalculate the unbalance, this time using B°, =1and B, =
2 as the bounds. Repeat this step until a zero unbalance is
bounded or until a maximum number of trails have been

performed.

Phase 2: Find RB° to minimize the unbalance.

Based on the values of B, = 1 and B’2 = 2 and the

corresponding unbalances, use a linear approximation to
choose the new value of 3°. That is,
Rn(B'l) (B'z - B‘l)

© = B, 2-15
I NS XY =71
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Evaluate the unbalance for this value. If it is less than a
specified tolerance, then quit. If not, choose the two
points with opposite signed unbalances and repeat Step (1).
Convergence is obtained when the unbalance is less than a

specified proportion of R,(0). That is, when
R, (B") < ¢ R,(0)

where ¢ is a constant between zero and one.
2.7.5 Conjugate Newton

In all of the methods described so far, the search directions has been
calculated by solving the equilibrium equations. Irons (1977) has
introduced the conjugate Newton method in which the direction of the
displacement increment is modified in each iteration. It is based on an
idea from the conjugate gradient method (an iterative method of solving
function minimization problems), in which a set of search directions that

are conjugate result in an efficient search.

In the conjugate Newton method, a displacement increment zng is first

calculated as in the constant stiffness iteration. This increment is
then modified so that it is conjugate to all previous directions, i.e.,
so that:

(arh™ k' art = 0 j o= i-1,i-2, ..

where fg‘ is the stiffness matrix at the beginning of the step.

The steps are as follows for each iteration.




An unmodified displacement increment is obtained from:
(2-18)

The displacement increment is made conjugate to the previous

displacement increments.

Ar. = Ar'-c¢ ar!

where ¢ is a constant determined so that:

(ar)” &k artt = o

modified displacement increment.

zlci" = displacement increment from previous iteration.

The magnitude of the step is calculated by a line search.




2.8 Special Logic

In cases where large unbalances develop or the iteration fails to
converge, it may be necessary to implement special logié in order to
complete the analysis. Three schemes which have been developed to deal

with these problems are considered in this section.

The first scheme aims to reduce the unbalance by making it orthogonal to
the external force. The second scheme is applicable to problems in which
a large unbalance may result from distinct "events" (e.g., gap closure).
A strategy that advances the solution from event to event is described.
Finally, for problems that do not converge within a specified number of
iterations, a scheme to restart the analysis from the last converged

state is described, along with a procedure to predict convergence.
2.8.1 Orthogonalized Unbalance

Bergan (1979) has introduced a method in which the unbalance force is
orthogonalized with respect to the applied force in each iteration. The

method is as follows for each iteration.
1. Calculate the displacement increment in the usual way.

2. Perform the state determination and calculation of the resisting

force, Rj.
3. Calculate the unbalanced force, Ry.

4. Calculate the component Ry parallel to Rp and subtract it from
both Ry and Rg. That is:
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v o= (R, Rp)/ (RY Rp)

and the subscript 0 represents an orthogonalized vector.

Check convergence. If converged, go to the next step. If not,

repeat from Step (1).
2.8.2 Event-to-Event Strategy

A strategy for problems that are linear (or nearly linear) between
well-defined events is to advance the solution from event to event,
rather than take specified steps with iteration. This strategy is
discussed, for example, by Porter (1971). The purpose of the
event-to-event strategy is to follow the equilibrium path closely at all
times by updating the stiffness and state each time an event occurs. In

this way the unbalance will, ideally, never get large.

The procedure is as follows, assuming the current state is an equilibrium

state.
1. Linearize about the current state.

2. Calculate the displacements for an arbitrary load increment.




Predict the next event. Events typically correspond to changes
of state in the elements, and event prediction calculations must
be performed for each element to determine whether the calculated
displacement increment will cause an event. If an event is
predicted, a scale factor is determined that will bring the

solution just to the predicted event.

Scale the displacement increment and add it to the current
displacements. Update the structure state. Continue from
Step 1.

2.8.3 Restepping if No Convergence

Despite the wide range of strategieé available, convergence will not
always occur. In such cases, it is helpful to have a restepping
capability available. This means that if convergence is not obtained at
the end of the correcting phase, the step size is reduced and the step is

taken again from the backup state.
2.8.4 Convergence Prediction

The restepping option can be augmented by the use of a routine that
predicts convergence, After a specified number of iterations, a
prediction is made as to whether the solution will converge in the
allowable number of iterations. If nonconvergence is predicted, the
restepping option is exercised. This type of prediction can save doing

futile iterations.




2.9 Desirable Features of a General Algorithm

It is possible to construct a general solution algorithm which retains
the structure of NR iteration but which incorporates most of the
variations described in the previous sections. The desirable features of
such a general algorithm are those that overcome the difficulties of the

standard NR iteration. Some of the features are as follows:
1. Strategies that avoid the high cost of linearization:

a. Modified Newton methods, such as initial stiffness and
constant stiffness iteration, that keep the stiffness

. constant for a number of iterations.

b. Quasi-Newton methods, such as BFGS, that use simple

modifications to the stiffness matrix.

2. Aids to convergence, especially for buckling and snap-through

problems:

a. Variable step size based on the current stiffness parameter

or the unbalanced load.

b. Line search in the correcting phase to minimize the

unbalance.
c. Direct control over the displacement increment.
d. Iteration with constant displacement.

e. Choice of path dependent or path independent state

determination.
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Special strategies, such as event-to-event, to deal with

particular types of behavior.

Restepping capabilities combined with iteration prediction to

deal with nonconvergence.
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2.10 Tasks and Phases

The general solution scheme for static nonlinear analysis incorporated
into the SEASTAR program is described in the remaining sections. The
scheme is similar in structure to Newton-Raphson iteration. However,
whereas there are four distinct tasks in NR iteration (1inearization,

calculation of the new displaced state, state determination, and

convergence check), there afe only three in the general scheme.

Linearization, which is performed every iteration in NR iteration, is not
considered as a separate task but only as an option for selecting a new

displaced state. The three tasks are:

a. Selection of the new displaced state.
b. State determination.

c. Calculation of the unbalanced load and checking of convergence.

As in NR iteration, there'are two phases in the analysis, namely, the
advancing phase and the correcting phase. The three tasks are performed

in each of the two phases.




2.11 Steps and Segments

An analysis is carried out in a series of analysis steps, each consisting
of an advancing phase and a correcting phase. The step size (which
defines the increments of load and displacement for the step) is
controlled by a stepping parameter, which may be either a load or
displacement quantity. For load stepping, the increment of load
magnitude is controlled and the displacement follows. For displacement
stepping, the increment in some displacement measure is controlied and
the load magnitude follows. The displacement measure will usually be a
specified scalar displacement but may also be (a) a displacement norm or
(b) the most critical of a set of specified scalar displacements.

Details are presented later.

A complete analysis is divided into a number of analysis segments, each
of which is divided -into a number of analysis steps. The amount of load
or displacement applied in a segment is defined by the analyst in terms
of a segment value, Vg. For load stepping, the segment value is the
change in load magnitude for the segment. For displacement stepping, the
segment value is the change in a scalar displacement or displacement
norm. Within any analysis segment, stepping continues until the segment
value is reached. The step size, Ss, is conveniently expressed as the
produce of a step factor, fs, (a number between 0 and 1), the segment

value, and a direction factor, ds (which is either 1 or -1). That is,

S, = f. V, d, (2-23)

The step factor may be specified in advance by the anaTyst, or it may be
determined automatically to satisfy certain criteria, depending on the

stepping options selected by the analyst.




2.12 Displacement Increment

For the advancing phase, and in each iteration of the correcting phase, a
displacement increment must be determined. The basic procedure for

calculating a displacement increment is as follows:

Displacements due to (a) the unbalanced load and (b) an arbitrary
increment of applied load are calculated by solving the

equilibrium equations:
- -1 _
Ar, = K R, (2-24)
Ary = ﬁ-l AR, (2-25)

where K is the appropriate stiffness depending on the chosen

solution strategy.

The displacement increment is formed as a linear combination of

these two displacement vectors. That is,

Ar = Ar, + a; Ar, (2-26)

A constraint equation on either a load or displacement quantity is used

to select the increment of applied load, a . For load stepping, a; is
specified directly, whereas for displacement stepping it is calculated

using a displacement constraint equation.




2.13 Advancing Phase

In the advancing phase, a load increment and a corresponding displacement
increment must be determined to advance the solution along the
equilibrium path. The nature of the step is determined by the stepping

parameter, step factor, and direction factor.
2.13.1 Determination of Step Factor

The step factor is a fraction of the complete segment value (load or
displacement) to be applied in the step. Similarly, for displacement
stepping, a step factor of 0.5 means that half of the segment

displacement is applied in the step.

The choice of step factor is an important consideration when advancing

the solution. Too large a step may put the search far from the

equilibrium path and may result in slow convergence or even divergence in
the correcting phase. On the other hand, too small a step may be
expensive because a large number of steps will be required to complete

the analysis.

The step factor may remain constant throughout the analysis or it may

vary. The available options are discussed in the following sections.




2.14 Equal Step

The analyst may specify that the solution is to be advanced in equal
steps so that the stepping parameter is incremented by the same amount
each step. For load stepping, the load increments will be equal and the
displacement increments will generally be unequal. Conversely, for
displacement stepping, the displacement increments will be equal (as
measured by the stepping parameter) and the Toad increments will

generally be unequal.

The disadvantage of using equal sfeps is that the step factor must be
chosen in advance by the analyst, and it may be difficult to select an
appropriate step factor. It may be advantageous, therefore, to allow

steps of variable size.
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2.15 Variable Steps

Two options for variable steps are included in the scheme, namely
(a) scaling based on unbalance and (b) scaling based on speed of
convergence. Other options could be added; for example, scaling baged on

Bergan’s current stiffness parameter.
2.15.1 Scaling Based on Unbalance

Scaling the step size based on the unbalance ensures that some norm of
the unbalance at the advancing phase never exceeds a specified value, U.
An advancing step is taken using the current step factor, and the
unbalance norm is calculated. If the unbalance exceeds U, the step size
is reduced and the step is retaken. This procedure is repeated until the

unbalance norm is below U.

Linear scaling is used, for which the step is scaled by:

Si = SJT U/IRS

where ()7 = ith trial and |Ry| is the unbalance norm.

This method results in smaller steps in regions of high nonlinearity.
Scaling in one step does not alter the step factor for the following

step.
2.15.2 Scaling Based on Convergence Rate

In the event of nonconvergence in a step, an option exists to take the
step again from the backup state, with a reduced step size. The

assumption is that if convergence is slow (or if divergence occurs), the




step size is too large and a smaller step would improve the chance of
converging. The amount of the step reduction is specified by the
analyst, by means of a reduction factor. For example, if the reduction
factor is 0.25, the step factor is divided by four and the step is

retaken.

If convergence is very rapid, the step size is assumed to be too small.
The step factor is then increased by a specified multiple if the solution

converges in less than some minimum number of iterations. Use of this

option will result in Targe steps where the solution is nearly linear.

For scaling based on convergence, the modified step factor is used in the

following step.




2.16 Stepping Parameter

The stepping parameter provides the analyst with the means of controlling
the Toad and displacement increments. The best choice for the stepping

parameter depends on the particular problem being solved.
2.16.1 Load Stepping

If the stepping parameter is the Toad magnitude (load stepping), then

ag in Eq. (2-26) is equal to the step factor and is thus specified
directly. The load increment for the advancing phase is the step factor
times the segment value. Typically, for load stepping the load magnitude
will be kept constant during the correcting phase, so that the load
magnitude for the step is specified. However, it is possible for the

load magnitude to vary during the correcting phase.
2.16.2 Displacement Stepping

For displacement stepping, the stepping parameter may be chosen as (a) a
displacement norm, (b) a scalar displacement, or (c) the most critical of
a set of scalar displacements. The quantity ap in Eq. (2-26) is then
determined so that the stepping parameter is incremented an amount equal

to the step size. The procedure is as follows:

Norms

If a displacement norm is chosen as the stepping parameter, a; is

chosen to make the norm of the displacement increment equal to the

absolute value of the step size. Hence,




(S, - bl AT )
Q = = = 2-28
£ bl Ar, ( )

Some possible choices for the stepping vector are as follows:

1. Single degree of freedom: A single DOF, j, .can be incremented by

specifying bg as a vector with all zero terms except term j = 1.

2. Strains: For an element such as a truss bar, displacement
differences provide a measure of longitudinal strain. For
example, consider a truss bar aligned parallel to the global X
axis, with longitudinal degrees of freedom i and J. In this
case, a stepping vector that measures the change in length is

given by:
bl = [..O-1 0...+ 1 0...] (2-29)

in which the -1 value is for DOF i and the +1 value is for DOF j.

3. Rotations: Approximations to element rotations can be
constructed as displacement differences. Consider, for example,
a trués bar along the global X axis, and let degrees of freedom k
and 1 be perpendicular to the bar. The rotation of the element,

re, is given approximately by:
A, = ((Ar), = (An))/L (2-30)

in which

(Ar), component k of Ar.
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component 1 of Ar.

element Tength.

The appropriate stepping vector is

bl = [...0-1/L 0...0 + 1/L 0...] (2-31)

in which the term -1/L is for DOF k and the term +1/L is for
DOF 1.

Critical Measure

In the above examples, the stepping parameter was a single predetermined
quantity. In some analyses, there may be more than one quantity that
needs to be controlled as the analysis progresses. Four scalar
displacements can be specified as possible stepping parameters. In any
step, the stepping parameter actually used is the most critical of these

possible choices.

The procedure is as follows:

For each scalar displacement, a stepping vector, b, and a

corresponding segment value, Vg, are specified.

In any step, the vector that is the most "sensitive" to the
applied load is used as the critical vector. Sensitivity is

determined by a variable c, given by:

c = b Ar_ /v
-8 Py 5 s




. 3. The value of a; follows from the critical vector as:

o _ (Vsc Is d, - 9:,_. ACu) (2_33)
F 9:{: ACE

in which Vg is the segment value for the critical vector, bsc.

The use of a critical vector to determine the step size has the advantage
that the stepping parameter for the solution can change as the character
of the solution changes. This feature allows contfo] of local
nonlinearities (assuming they can be reflected in appropriate stepping

vectors).
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2.17 Step Direction

The calculation of the quantity o, in Eq. (2-26) has been discussed so

far in terms of using the step size to scale the load or displacement
increment. The sign of the step size, however, depends on the value of
the direction factor, which is either one or minus one. The step
direction must be chosen so that the solution advances in each step
(i.e., so that the converged state found at the end of the step does not
Tie on a portion of the equilibrium path which has already been
calculated). In general, the stepping parameter may reverse its
direction during the analysis, and it is not always obvious in which

direction the step should be taken.

Two methods are offered for the choice of the step direction. The first
is to identify a direction parameter to guide the direction. If a
direction parameter is specified, the step direction is chosen so that

the value of the direction parameter increases in every step. The second

method specifies the step direction indirectly, using Bergan’s current

stiffness parameter.
2.17.1 Direction Parameter

The best choice for the direction parameter in any analysis is not always
known in advance. The essential requirement of a direction parameter is
that it increases monotonically throughout the analysis. Even in the
most complicated cases such parameters exist, but it may take trial and
error by the analyst to find them. Possible choices include the 1load

magnitude and various scalar displacements.




Load Magnitude

If the direction parameter is load magnitude, then the load is increased
in every step (i.e., ay is always positive). This option will work

only for structures that do not buckle and lose strength.

Critical Vector

If the critical measure option is used to determine the stepping

parameter, then the critical vector may be used to determine the step
direction. The direction is chosen so that the scalar displacement rs,
defined by:

r. = b’ Ar

s —SC -—
is positive.
New Vector

A new vector, different from the stepping vectors, can be specified as
the direction vector. Any of the scalar displacements discussed as

stepping parameters are possible direction parameters.
2.17.2 Bergan’s Current Stiffness Parameter

The second method for direction choice is automatic load step selection
by use of Bergan’s current stiffness parameter. In this methpd, the sign
of ap starts out positive and changes sign each time Sp passes through
zero. Although the step direction is not specified directly, its value

is determined once the sign of a; is specified.




2.18 Correcting Phase

Following the advancing phase, one or more iterations are typically done
to correct the solution in the region of the predicted state. Ideally, a
converged state that is close to an equilibrium state (as measured by the
“unbalance) is found. However, specification of a large tolerance may

allow significant unbalance.

Iterations are performed by holding an iteration parameter constant and

adjusting the remaining degrees of freedom. The iteration parameter may

be either the 1oad magnitude or a displacement quantity.
2.18.1 Constant Load Iteration

For constant load iteration, the iteration parameter is the load
magnitude. Keeping the load magnitude constant is accomplished by
setting a; = 0. The displacement increment is thus:

Ar = ACU

2.18.2 Constant Displacement Iteration

A displacement quantity can also be chosen as the iteration parameter.
An iteration vector, by, is specified to identify a scalar displacement
(the iteration parameter) which is to be kept constant during the
iteration. The magnitude of o is then chosen so that the change in

the iteration parameter is zero. That is,

T
-b, Ary,

a; =
T
b, Ar;




Some possible choices for the iteration parameter are discussed below.
These include external work, arc length, and specified scalar

displacements.
Constant Work Iteration

If a vector equal to the applied load vector is chosen as the iteration
vector, then the quantity held constant during iteration is the external
work (i.e., the applied load does no external work on the structure

during the correcting phase). For this case:
b, = R (2-37)
Constant Arc Length

Iteration with constant "arc length" has been discussed by Riks (1979)
and Crisfield (1981). It is based on keeping the arc length, s, defined
by:

s = (af + ArT oar)'”? (2-38)

constant throughout the iteration. This leads to a quadratic equation

for a..

A simpler method is to iterate in such a way that the displacement
increment for any iteration is normal to the accumulated displacement
increment for the step; this method is discussed by Ramm (1980). The
iteration vector in this case is the displacement increment accumulated

from the beginning of the current analysis step.
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Constant Scalar Displacement

Several choices of scalar displacements for the advancing phase have been
considered in Section 2.16.2. Any of these can be used for the
correcting phase. For example, if the iteration vector is a unit vector
with one in the jth term and all other terms are zero, the jth DOF will

be held constant during the iteration.
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2.19

Line Search

An option is provided to carry out a line search on the magnitude of the

displacement increment in each iteration of the correcting phase. The

purpose of the line search is to choose the magnitude of the displacement

increment that produces the smallest unbalance for the current external

forces. The magnitude of the displacement increment is varied by

multiplication by a scalar, R°, while the external forces are held

constant. The scaled displacement increment, Ar., still satisfies the

iteration condition, namely, that the iteration parameter remains

constant during iteration.

The procedure is as follows:

1.

Perform state determination and unbalance calculations for three
values of R°, namely, B’ = 1, B =R°,, and B = R°,, where
B, and ", are upper and lower limits specified by the
analyst. The lower limit, B,, should be between 0 and 1 and the
upper limit, B,, should be greater than 1. Let the
corresponding unbalance norms be R,(1), R,(B",) and R,(B")).

A new value of B° is predicted by choosing the value that

corresponds to the minimum R,, based on a parabolic

approximation through the three known points.

Step 2 is repeated using the three most recently calculated

points until one of the following conditions is met:

a. Convergence is reached. That is,

R,(B) < ¢ R,(0) (2-39)

2-53



in which Rh(0) is the unbalance norm at the beginning of the
iteration and ¢ is a constant between zero and 1 that should

be specified by the analyst.

The predicted value of B° is beyond the specified limits.

The allowable number of trials is exceeded.

If condition (a) applies, the next iteration is begun from the state
corresponding to the latest value of R°. If condition (b) or (c)
applies, the next iteration is begun from the state with the smallest

unbalance.




2.20 Updating the Stiffness

It has been mentioned that the cost of reforming the stiffness each
iteration can be high and that stiffness reformulation is not always
necessary for convergence, especially if the change in stiffness between
iterations is small. In general, the optimum frequency with which the
stiffness matrix is reformed depends on the problem being solved. For
this reason, the frequency with which the stiffness matrix is updated is

Teft as a variable to be specified by the analyst. Because the stiffness

is not necessarily updated each iteration, the stiffness matrix used in

solving the displacement increment is not always the current tangent
stiffness (although for optimal convergence, it should generally be a

close approximation to the current tangent stiffness).

2.20.1 Update Frequency

The frequency with which the stiffness is updated may be specified at
both the step level and the iteration level. Linearization is done only
at the specified intervals and is always based on the current state.
With appropriate choice of stiffness update frequencies, techniques such
as initial stiffness iteration, constant stiffness iteration, and NR

iteration can be specified, as follows:
Initial Stiffness Iteration

Initial stiffness iteration is obtained if the specified step frequency
is greéter than the maximum number of steps and if the specified
iteration frequency is greater than the maximum number of iterations.
Thus, the stiffness is reformed only once, at the beginning of the

analysis.




Constant Stiffness Iteration

Constant stiffness iteration is obtained if the step frequency is one and
the iteration frequency is greater than the maximum number of iterations
per step. The stiffness is then formed only at the beginning of each

step.

Newton-Raphson Iteration

Newton-Raphson iteration is obtained if both the step frequency and the

iteration frequency are equal to one. The stiffness is then reformed

every iteration..




2.21 BFGS Stiffness Modification

As a compromise between reforming the stiffness and keeping it constant
for a given iteration, an option is included to modify the stiffness
matrix. The modification used is the rank two update to the inverse of
the stiffness matrix that was introduced in the discussion of the BEGS
method.
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2.22 Event Prediction

In analyses where event occurrences can cause large changes in stiffness,

it may be advantageous to predict the next event, advance the solution
Just beyond it, and then update the state and stiffness. This procedure

will keep the solution close to the equilibrium path.
2.22.1 Algorithm

The procedure used to predict events in the advancing phase is as

follows:
The displacement increment is calculated.

If it is determined that the calculated displacement will cause
an event, the displacement increment is scaled to bring the

solution just beyond the first predicted event.
A state determination is performed, and Ry is calculated.

If it was determined in Step (2) that an event would occur, the
state is updated and linearized. Since only a fraction of the

step has been applied, the solution returns to Step 1 to apply

the remainder of the step. If no event was predicted, the

solution enters the correcting phase.

The same procedure is followed for events predicted in the correcting
phase, but in Step 1 the increment is chosen to keep the iteration

parameter constant.




2.23 State Determination

The structure resisting force is calculated by assembling the element
resisting forces in the current displaced state. The element forces are
obtained by state determination calculations, using the displacement

increment accumulated from the reference state to the current state.
2.23.1 Frequency of Updating

The frequency with which the state is updated is specified by the analyst
(in terms of number of iterations) and is independent of the stiffness
update frequency. This allows the analyst to specify path dependent or

path independent state determination, or any scheme in between.

In displacement stepping for softening structures, the load magnitude
decreases during iteration. To avoid false unloading of yijelded

elements, path independent state determination should be used.
2.23.2 Path Dependent State Determination

Path dependent state determination is chosen by specifying that the state

be updated every iteration.
2.23.3 Path Independent State Determination

Path independent state determination is chosen by specifying the state
update frequency to be larger than the maximum number of iterations. The
state at the beginning of the step is then used as the reference state
for all state determinations in the step. Path independent state
determination has the advantage that the reference states are all

converged states.
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2.24 External Load

The external load is the total load applied to the structure in the

current state. It is calculated using the current values of the load

pattern magnitudes, allowing for any configuration dependence.




2.25 Unbalance

The unbalanced force vector, Ry, is calculated as the difference between
the external applied forces and the structure resisting forces. A norm
of the unbalance vectbr is typically used as the measure of the unbalance
of the system. The Euclidean norm or the infinity norm of Ry can be

chosen as the unbalance measure.

The rotational degrees of freedom may be excluded in calculation of the
unbalance. This option is useful because it eliminates combining

quantities with different units (i.e., forces and moments).
2.25.1 Convergence Rates

Extensive studies have been performed on the convergence properties of
Newton-type methods. For standard NR iteration, it has been determined
that the convergence rate is quadratic for continuously differentiable
functions, provided the predicted displacement increment is not too
large. The convergence rates for modified Newton and quasi-Newton

methods tend to be linear or super-linear.
2.25.2 Predicting Convergence

Because the methods being used have the property of linear, super-linear,
or quadratic convergence, it should be possible to predict whether or not
a given iteration sequence is going to converge within the specified
number of iterations. It may require a few iterations before a good
prediction can be made, and these predictions will not always be correct.
However, the advantage of predicting nonconvergence is that it can save

computation if it appears that the solution will not converge.
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. Algorithm

The algorithm for convergence prediction is as follows:

Quantities Specified:

Iteration at which prediction begins = Ip.

Weighting factor for convergence rate = W.

Unbalance tolerance = U.

Maximum allowable iterations = n.

1.

For iteration i, a convergence ratio, c;, is computed by diving

the unbalance at the end of the iteration, R:, by the unbalance
at the beginning of the iteration, RY'. That is,
R

¢ = =4 (2-39)

An estimated convergence rate, c;, is calculated by taking a

weighted average of the individual convergence ratios. The ratio
is weighted so that the most recent iterations are counted more

heavily. That is,

Co + Weyg + o0 + Wi ¢
c, = , (2-40)
t 1 + [4/2 4 e o+ Wl-]

in which
ci = ith value of c.
Wi = W raised to the ith power.
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The unbalance is extrapolated using the current unbalance and the
estimated convergence rate. The number of iterations, k,

required to reach convergence is estimated as:
= In (U/R.)/C, (2-41)

The value of k is truncated to an integer value, and the number

of iterations to convergence is then predicted to be k + 1.

If the number of iterations is less than the maximum allowable,
the iteration continues. If not, nonconvergence is predicted,

and the restepping option is exercised.

Convergence prediction begins on an iteration number specified by the
analyst. The use of an iteration other than the second allows the

solution to settle down before the prediction begins. In general, the

more information available for prediction, the more accurate the

prediction will be.

A number of grace iterations is allowed so that the solution will
continue if the predicted number of iterations to convergence is small,
even if the total number is greater than the maximum allowable. The
number of grace iterations is specified as a portion of the number of
iterations completed. For example, a proportion of 0.5 means that if 8
iterations have been completed and a prediction of 3 iterations to
convergence is made, the solution will continue even if the maximum

number of jterations is 10.




3.0 SEASTAR DYNAMIC SOLUTION

The dynamic analysis procedures incorporated in SEASTAR are outlined in
this chapter. Two separate analysis methods are incorporated in the
program. The first method is based on a constant time step procedure
using Newmark’s integration procedure. The second method uses a
step-by-step integration strategy which automatically varies the time
step to ensure accuracy. This allows large steps to be used when
possible, and small steps when necessary. An event-to-event strategy is

also incorporated to modify step sizes during critical phases of the

analysis, such as gap closure and yielding. The Hilber-Hughes-Taylor

step-by-step integration method has been incorporated in addition to
Newmark’s method. This method introduces numerical damping and may
improve the solution stability of certain types of nonlinear problems. A
brief description of the computational steps involved in a dynamic

analysis is included. For a complete background to the theory, refer to
Oughourlian (1982).




3.1 Linear Step¥by-Step Dynamic Analysis

3.1.1 Newmark, B = 1/4 Method

The most commonly used scheme for step-by-step dynamic analysis is the

Newmark, [ = 1/4 (constant average acceleration) scheme. This scheme

is based on the following equations for the increments of acceleration

and velocity in a time step.

where
Ar
Cl! Cl
At

AP = —2pt - Ao oA A / (3-1)
- - At = At -
Ar = =2r' + A% Ar / (3-2)

increment in displacement.

velocity and acceleration vectors at beginning of step.

time step.

With these relationships, an incremental equilibrium equation can be

written as:
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effective stiffness matrix.

effective load increment.

mass matrix.

damping matrix.

static stiffness matrix.

A RE external load increment.

Hence, for step-by-step dynamic analysis, there are three major

differences from linear static analysis, as follows:

Form the effective stiffness matrix:

ke - 4
Atz—

2. Form the effective load vector:

+ M §!




3. Perform equilibrium check by calculating the equilibrium vector,
Ry:

velocity and acceleration vectors at end of step.

RZ external load vector at end of step.

R? static internal resisting load vector at end of step.

3.1.2 Hilber-Hughes-Taylor (HHT) Method

The HHT method (1977) adds numerical damping by solving the following

modified equilibrium equation:

4 2 .1 4
Mt ECr Q@K |ar - apem[rs

r'l:I+2£r_‘l (3-8)

i

where a is a damping parameter (-% <a< 0).

For dynamic analysis using the HHT method, ther are two modifications
from the Newmark (3 = 1/4 method, as follows:




Form the effective stiffness matrix:

Kx = ZM+ZceraK

Perform equilibrium check:

- R;)) (3-10)

static internal resisting load vector at beginning

of step.

a correction which must be applied because true

equilibrium is not satisfied.




3.2 Variable Time Step Dynamic Analysis

The variable time step approach requires additional logic to choose the
variable time steps. The logic used in the midstep error calculations

and event-to-event strategy is described in this section.
3.2.1 Midstep Error for Linear Problems

Hibbit and Karlsoon (1979) have proposed a criterion for the selection of

the time step, At. This criterion assumes that if the equilibrium

error, AR -, at the middle of any time step is small, then overall

equilibrium errors will also be small and the time step is acceptable.
The midstep error can easily be calculated for a linear problem, as shown

in Figure 3-1, as:

elastic stiffness matrix.

increment in nodal velocities.

At = time step.

Within each step, a test is made to check whether the time step is too
large for acceptable accuracy. This is done by comparing a norm of the
midstep error with an upper tolerance. If the tolerance is exceeded, the
time step At is reduced by a user-specified factor (usually 0.5). If

the error is smaller than a lower tolerance for two consecutive steps,




FIG. 3-1 CONSTANT AVERAGE ACCELERATION SCHEME
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then At is increased by a second factor (usually 2). This algorithm
thus controls the equilibrium error by automatically adjusting the time

step.
3.2.2 Midstep Error for Nonlinear Problems

For a nonlinear problem, exact equilibrium is never, in general,
satisfied either at the end of a step or within the step. Nevertheless,
Eqn. (3-10) can still be used to estimate the midstep error, provided
that it is recognized that the stiffness may change within the step. If
the stiffness does not change, the tangent stiffness matrix must be used

when calculating the midstep error, as follows:

where KT is the static tangent stiffness matrix.

With the event-to-event solution strategy (described in the following
section), if any event occurs within a step, the midstep error, AR _,
is weighted by the governing event factor and accumulated over the entire

step in the following manner:

AR, = )@, K. AF, (3-12)

where a, is the governing event factor for substep i and i is the

substep number. An alternative method for the computation of the midstep
error would be to perform a state determination calculation, and hence,
determine the equilibrium error exactly at midstep. With this procedure,

however, it is essential to iterate to convergence at the end of the step




in order to eliminate any effect due to the unbalanced load Ry. In
general, the use of Eqn. (3-12) is preferred because it eliminates the

need to iterate and is also more efficient.

The midstep error calculation could be carried out either at’ the element
lTevel (in which case AR_ is assembled from the element contributions)
or directly at the structure level. In the latter case, the static

tangent stiffness matrix KT must be available.
3.2.3 Event-to-Event Strategy

The event-to-event solution strategy for nonlinear analysis provides
means of controlling the equilibrium error. Any significant "event"
occurring within any element (such as yielding, nonlinear unloading, gap
closure, etc.) determines a substep. The tangent stiffness is modified

in each substep, and hence, the solution closely follows the exact

response.

If the exact response of the structure is piecewise linear (Figure 3-2),
and if no "overshoot" of the exact event is allowed, the solution will
follow the exact load-deflection curve and no equilibrium unbalance
result. In general, however, the response is not linear between

well-defined events, and the type of behavior shown in Figure 3-3 is more

likely to be present. In this case, the solution does not follow the

exact response, with the result that there is an unbalanced load, Ry, at
the end of the step. This unbalanced load will be small if the events
are well chosen (i.e., if they represent major nonlinearities in the

behavior of the structure).
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FIG. 3-2 ITERATION IN EVENT-TO-EVENT SOLUTIONS

FIG. 3-3 UNBALANCE IN EVENT-TO-EVENT SOLUTION
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To apply the event-to-event strategy, an event factor must be calculated

for each element, and the minimum factor chosen to determine a scaling

factor of the the displacement increment, Ar, for the substep. An

event could also be defined in terms of nodal displacement Timits.
Scaling the displacements Ar by the minimum event factor requires that

the following complications be considered:

The state determination calculations for elements which have
initial strain loadings require that the governing event factor
be used to obtain the correct proportion of the initial
deformations which are to be used. The state determination

calculation is essentially:

AQ

element force increment

element tangent stiffness matrix.

element deformations due to scaled displacement

increment.

initial element deformations calculated assuming

an unscaled load increment.

governing event factor.




Path dependent state determination is consistent with the
event-to-event strategy, whereas the path independent scheme can
Tead to inconsistencies. This is because the event factor is
calculated from the current state. Hence, the state
determination calculations should also begin using the current

state.

After any event, the load vector may be multiplied by (1 - a) to

obtain the remaining portion of the load to be applied in the

next substep. If the initial strain effects are present,

however, simply scaling the load vector, AR*, is not consistent

because the tangent stiffness, k7, may have changed, so that the
initial strain loads may have to be recomputed. Hence, AR must
generally be recalculated at each substep and cannot be simply

scaled.
3.2.4 Dynamic Load Scaling Using the Event-to-Event Strategy

The effective load vector for dynamic analysis contains contributions of
initial stress type, and hence, recalculation of the load vector may
strictly be necessary at each substep to account for changes in k7. For
computational convenience, however, AR* can be assumed to be unaffected
by changes in ky, so that it can be scaled by (1 - a) for each substep.
In effect, the solution within the step is found as if the loading were
static with no initial strain effects. This can introduce some
inconsistencies during the state determination and some unbalanced loads
Ry which are not corrected at the end of each substep. Hence, any

accumulated unbalances must be corrected in the following step.




An alternative approach is to recalculate AR* at the end of each

substep, including unbalanced load effects. This has the disadvantage of
requiring an internal resisting force calculation at each substep, which
requires the current velocities and accelerations. These quantities are

not readily available in consistent form within the substep.



. 3.3 Energy Calculations

The different types of energy which can be calculated are as follows:

Work done by external loads.

Kinetic energy.

Viscous-damping work.

Internal work done by the elasto-plastic forces in the elements.
Work done by seismic base shear forces moving through support

displacements.

Ideally, the internal and viscous-damping energies should be calculated
exactly in the elements during the state determination phase. However,
an alternative and simpler approach is to calculate these energies at the
structure level using nodal forces and displacements. With this

procedure, the internal energy increment, AE,, is calculated as:

AE, = 5 (R + R)) - ar (3-14)
The elastic-plastic work is calculated if R1 = resisting forces due to
element elastic-plastic actions only, and the viscous damping work is
calculated if Ry = resisting forces due to viscous damping effects within
the elements. Other energies can be calculated similarly. The base
shear energy can be obtained using the imposed nodal displacements and
the corresponding nodal forces in the R1 vector. The kinetic energy is
conveniently calculated as the work done by the inertia forces moving

through the corresponding nodal displacements.
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After all energies have been computed, a check on the energy balance can
provide both a measure of the error produced during a nonlinear dynamic

analysis and an idea of the contributions of the different types of
energy.
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3.4 Viscous Damping
The viscous damping in SEASTAR has the form
C = «

n M+ B, K, o+ B, K (3-15)

—-T

where a,, B, and (B; are proportionality constants. Because the term

Bs K; changes as the structure becomes nonlinear, it is recommended

that B; be specified as zero.




4.0 SEASTAR EIGENSOLUTION
4.1 Introduction

The period and mode shape of vibrations of a structural system provide a

significant insight to dynamic response of the system.

The frequency and mode shapes of the structure are obtained by solving

the generalized eigenproblem of the form
Ke = MoA
in which
the structure’s stiffness matrix.
the structure’s mass matrix.

the structure’s eigenvector matrix.
A the structure’s eigenvalue matrix.

$® is the matrix of mode shapes of the structure, and the diagonal terms
of the matrix A are the square of the natural frequencies of vibration

of the structure.

The procedure used in SEASTAR to perform the eigensolution is outlined in

the next section.




4.2 Procedure

The solution of an eigenvalue problem requires computation of mass and
stiffness matrices. The structural mass matrix in SEASTAR has
contributions from input concentrated mass and generated structural and
hydrodynamic added mass. Lumped mass formulation is used in SEASTAR;
hence, the mass matrix is diagonal. Lumped mass formulation is preferred

to consistent mass formulation due to its computational efficiency.

The structural stiffness in SEASTAR has contributions from elastic and
geometric stiffness. In riser analysis the effect of tension in the
risers contributes significantly to the riser stiffness. After the
application of static loads, the forces in the elements are used to
evaluate the geometric stiffness of the structure. The geometric
stiffness is added to the structure’s elastic stiffness to obtain the
total stiffness. At least one stiffness reformation should be performed

after application of static loads and prior to an eigensolution.

The subspace iteration procedure is used in the eigensolution analysis of

SEASTAR. This procedure allows the user to find a few required

eigenvalues efficiently.




4.3 Subspace Iteration

Subspace iteration is from the family of iteration methods.

In this

method, the stiffness and mass matrices are projected into a smaller

subspace depending on the number of trial subspace vectors. The
projected matrices are given by
Co = Xy M (K-oM)' M x, (4-2)
and
He = X[ M X, (4-3)
in which
Xy = aset of trial vectors.
0 = a specified shift (o = 0 gives the sma]]est eigenvalue).
Gy = projection of stiffness matrix.
H, = projection of mass matrix.

The reduced problem is then solved in SEASTAR by the Q-L algorithm, and

the solution of the reduced problem is projected into the original space.

The shifting strategy allows the user to find the eigenvalues closest to

a prespecified shift o. This prevents unnecessary computation of

unwanted eigenvalues and eigenvector. For more details on sub-space

iteration, refer to Wilson (1976).
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4.4 Subspace Iteration Algorithm

The steps carried during an eigenvalue analysis can be summarized as

follows:

Given a pair of matrices K and M and a set of m vectors
xM = ey x Uy
where m is the subspace size,
Factor (K - oM) into LOLT for a specified shift.
For i = 1, until convergence perform

i) Solve (K - oM) X = Mx®,

1) G, = [X©T MK-oM)"' M[XD].

[E(i)]-r M[_)g(i)]_
Solve (G,-ADH ) Y®

X+ - X y @

Check for convergence of A,




4.5 Sturm Sequence

A Sturm sequence check is provided into the subspace iteration method.

The Sturm sequence check gives the number of eigenvalues skipped when a

shift o is made. This procedure is useful as a check to prevent

skipping eigenvalues when a shift is performed.




5.0 SEASTAR FINITE ELEMENTS
5.1 Nonlinear Truss Elements

The nonlinear truss element possesses a bilinear material model coupled
with a rigorous 3D large displacement geometric stiffness formulation
capable of predicting complete rigid body motions as well as

accommodating large element deformations.
5.1.1 Applications

The element is very effective in modeling structural systems governed by
axial material and geometric stiffness nonlinearities. The element of
course cannot provide direct prediction of flexural behavior. It does,
however, possess a higher order axial strain formulation not contained in
the beam elements which allows the truss to predict the behavior of

systems that undergo very large internal strains or stretch.

The element does have a nonlinear material model which can represent
observed behavior of steel type materials. For computation purposes,
this bilinear stress-strain relationship is considered to be the sum of
two parallel elements; one an elastic-perfectly plastic component, the

other a linear component.

5.1.2 Stiffness Terms

The element has six degrees of freedom, three translations at each end as

shown in Figure 5.1-1. The element displacements in the local

coordinates are written as

u = {u, u, Uz




a) Global Coordinates

b: Local Coordinates

FIG. 5.1-1 NONLINEAR TRUSS ELEMENT
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The total element stiffness matrix consists of two distinctive
contributions, the material and the geometric matrices, and can be

written as

ke, Material Element Stiffness

The basic truss bar material stiffness is

where E is the Young’s Modulus, A is the cross-sectional area, and L is

the element length. Young’s Modulus can vary according to the bilinear

model shown in Figure 5-2.
kg, Geometric Element Stiffness

The formulation of a complete geometric stiffness centers on a higher
order strain definition than the conventional engineering strain

definition.
The Green strains applicable to large deformation problems are used.

For the truss element, the important strain is Ex and is given by

ou 1 (au)z (au)z (aw)z
E = — -+ -— — at— —
X oX 2 ox ox ox

The strain increment, AE,, is given by




O (Tension) O (Tension)

Buckling {E L

(a) Elastic Buckling and Tensile Yield (b) Tensile and Compressive Yield

(c) Addition of Components to Form Element

FIG. 5.1-2 NONLINEAR TRUSS ELEMENT
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AE. = E?

X X

- F!

where E, and EZ are the strains at the beginning and the end of the

increment, respectively. The strain increment can be written as a sum of

a linear and nonlinear strain, i.e.,

where

e, =

- ou' | 9 (Auw) . ou! 9 (Av) . ow' 3 (Aw)
ox ox ox ox ox ox

and

_ l[(&(Au))z . (a (Av))z _ (a (Aw))z:l
Nx 2 vax ox - ox

The linear strain can be written in the following form

where Ly is the undeformed element length and B| is given by.

ou') ov!' ow! oul\ ov! ow!
BL = - 1 + 1] 9’ 1] l + i) i
- ox oxX 0oXx ox X OXx

at t = 0, ul = vl =wl =9
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which is the standard bar stiffness matrix.




which is the invariant form of truss bar geometric stiffness.
5.1.3 State Determination

The state determination for the truss bar element with the small

displacement option assumes the original element geometry for state

determination calculations. When the large displacement option is used,

the final configuration is used for state determination. The large

displacement theory is embedded in the fundamental assumptions of the

element formulation.




5.2 Large Displacement Beam Element

This element has a rigorous three-dimensional geometric stiffness which
makes it capable of modeling complete rigid body motions and moderately

large deformations.
5.2.1 App1ications

The element is appropriate for modeling virtually all large displacement
beam behavior in which the material remains linear. If Targe element
deformations are to be resolved, it is important to include Kgi, the
internal geometric stiffness. The beam is only modestly more expensive

computationally than the nonlinear truss bar and provides more stability

to the solution because of the additional flexural stiffness it provides.

5.2.2 Basic Assumptions

The basic assumptions are stated as follows:

The material is linearly elastic.
Plane sections remain plane.
Element deformations are small at all times.

Increments of nodal rotations are small.

N W N e

Cross-sections are prismatic and doubly symmetric and remain so

at all times.
6. Warping of cross-sections and changes in cross-sectional shapes

are negligible.

Note that the assumption of small element deformations does not imply
small displacements. Nodal displacements in each load step (or

iteration) can be large as long as the element deformations are small.
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FIG. 5.2-1 ELEMENT COORDINATE AXIS

AXES OF STMWMETRY
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' ELEMENT AFTER
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,)’\ OF SMYMMETRRY

/X

\— ELEMENT BEFORE

DEFORMATION

7

~
z

FIG. 6.2-2 ELEMENT BEFORE AND AFTER DEFORMATION




Increments in nodal rotations (and translations) are represented by
vectors and therefore transformations from global to local axes are
permissible. Since finite rotations cannot be represented as vectors,

the assumption of small increments in nodal rotation is necessary.

Note that no restriction is placed on total rotations and translations.
Total rotations and translations can be large provided that assumptions 3

and 4 are not violated.
5.2.3 Element Local Axes

The initial orientation of an element in space is defined by three nodes
I, J and K as shown in Figure 5.2-1. Each element has a local Cartesian
coordinate axis. The 1 axis passes through nodes I and J. The 2 axis is
in the plane of nodes I, J and K and is perpendicular to the 1 axis. The

3 axis is perpendicular to both 1 and 2 axes (by the right-hand rule).

Initially cross-sectional centroids coincide with the 1 axis and

cross-sectional axes of symmetry coincide with 2 and 3 axes.

After an element has undergone some displacement and rotation, the
initial element axes can no longer define the new orientation of the
element in space. Furthermore, a typical element may deform as shown in
}Figure 5.2-2 and in general a single set of element axes can no longer

define the geometry of the element.

If the element deformations are small, however, a single set of element
axes can define the orien@ation and geometry of a deformed element. In
this formulation, a single moving element coordinate axis is considered.
As an element displaces, the element coordinate axis also moves with the

element.
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5.2.4 Element Degrees of Freedom

Each element has 12 degrees of freedom, three translations and three
rotations at each node. Increments in nodal displacements and rotations,
g, with respect to the global coordinate system are shown in Figure
5.2-3.

The same increments in nodal displacements and rotations with respect to

the element local axes, u, are shown in Figure 5.2-4.

5.2.5 Element Relative Deformations and Forces

Element relative deformations, Av can be defined by six quantities, as

shown in Figure 5.2-5. Increments in element relative deformations and

forces referred to the element local axes are shown in Figure 5.2-6.

5.2.6 Transformations \

Increments in nodal displacements and forceé referred to element

coordinate axes and global coordinate axes are related as follows:
T A (5.2-1)
(5.2-2)
(5.2-3)

(5.2-3)




FIG. 5.2-3 INCREMENTS IN NODAL DISPLACEMENTS (Ag) AND
FORCES (AQ) REFERRED TO GLOBAL COORDINATE AXIS

FIG. 5.2-4 INCREMENTS IN NODAL DISPLACEMENTS (Au) AND
FORCES (AP) REFERRED TO ELEMENT COORDINATE AXIS
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FIG. 5.2-5 INCREMENTS IN ELEMENT RELATIVE DEFORMATIONS Ay

O14N\TEX =STAR\FC5-2-5




FIG. 5.2-6 INCREMENTS IN ELEMENT RELATIVE DEFORMATIONS
AV AND FORCES Af |

OV4N\TEX ~STARNFGCS~2-6




where

Au, AP

Av, AF

™~

16

increments in nodal displacements and forces referred to

global coordinate axes, see Figure 5.2-3.

increments in nodal displacements and forces referred to

element Tocal axes, see Figure 5.2-4.

increments in nodal relative deformations and forces

referred to element local axes, see Figures 5.2-5 and

5.2-6.

coordinate transformation matrix.

t zZeros

direction cosine matrix

— —_

Ly, m, n

= l, m; n,

| I3 m3; ng

(5.2-95)

where l;,, m;, n; are direction cosines of the local

axis i.
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L = current element length.

5.2.7 Stiffness Terms

The total element stiffness matrix for the large displacement beam

consists of three distinctive contributions as represented by the

following expression:

total element stiffness.

Tinear elastic material element stiffness




external geometric stiffness (two options available).

= truss bar form.

= jnvariant form.

internal geometric stiffness.

For large displacement problems the external geometric stiffness controls

the nodal displacement response. The internal geometric stiffness is

primarily important in the refinement of internal moment resolution and
secondary in controlling global structure displacements. For detailed

derivations of the element, refer to Riahi (1979).
Ke, Linear Elastic Material Element Stiffness

The linear elastic material element stiffness is given by Eq. 5.2-8.




_AE
L
6E1,
L2
12E1, 6E1,
TE L?
GJ
i
4E1l,
I
4E1,
i
AE

Symmetric

-12E1,

-6E1,

12E1,
LJ

-12E1,

-6E1,
IE

Linear Elastic Stiffness Matrix

6EI,
L2
6E/,
L2
_6J
L
2FEI,
L
2EI,
L
-6E1,
L2
-6El,
L2
cJ
L
4E],
L
4E1,
r |
(5.2-8)

cross-sectional moment of inertia about element local y

and z axes.
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cross-sectional torsional moment of inertia.
initial element length.
Kget, External Geometric Stiffness (truss bar form)

Eq. 5.2-9 lists the individual terms of the external geometric stiffness

matrix in terms of the element local axes.

current element axial force (tension positive).

current element length.




The term external stems from the fact that the matrix is addressing the
effect of the external nodal forces on equilibrium due to large
displacements. This stiffness matrix is independent of the element
characteristics and deformations occurring within the element. It is
commonly referred to as the P- A stiffness associated with gravity loads
on buildings causing overturning moments. Figure 5.2-7 provides a more

visual interpretation of the contribution.
Kgeis External Geometric Stiffness (invariant form)

Eq. 5.2-10 lists the individual terms of the external geometric stiffness
in the invariant form in terms of element local axes. The four new

matrix elements arise from the inclusion of the nonlinear axial strain

term

1 (au)z
2 \ox

which is of course only significant if axial strains are not small.
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i

—gei

(5.2-10)

1

L = current element length.

It is invariant from the fact that the global stiffness is unchanged, no
matter what the element orientation in space, whereas the global
stiffness associated with the truss bar form changes with element
orientation. The invariant from is important when large axial member

extensions are being considered.
Kgi» Internal Geometric Stiffness

Eq. 5.2-11 lists the individual terms of the internal geometric stiffness

matrix in terms of element deformations.
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(5.2-11)

current element axial force (tension positive).

current element lengths.

Figure 5.2-8 illustrates the physical interpretation of the matrix. In
(a), the simply-supported beam is loaded with equal end moments resulting
in the uniform moment (and curvature) distribution along the beam length.
An axial load, P, is added in (b) and the moment distribution is altered
by the moment developed by the axial force combined with the lateral
(flexural) deformation of the beam. The result is a nonuniform moment

distribution along the beam length. The potential energy associated with




this modification of the internal strain energy results in the internal
geometric stiffness term. Figure 5.2-8(c) emphasizes a modeling
consideration in regard to the internal geometric stiffness term. If the
simply supported beam is modeled with multiple elements as opposed to a
single element, the relative lateral flexural deformation within a single
element is greatly reduced and the importance of including this stiffness
is greatly diminished. Both models would give the same results, but the
multi-element model would accommodate the'interna1 geometric stiffness
effects shown in Figure 5.2-8(b) through the external geometric
stiffness. The multi-element model reduces the complexity of the
individual element stiffness matrices, but, of course, at the expense of

requiring more elements to model the system.
5.2.8 Computational Steps

For each load step or iteration within each load step, the following

computations are performed:

1. Element tangent stiffness is formed and returned to the base

program.

Elastic and internal geometric stiffnesses are formed and
transformed from element deformation degrees of freedom to

local degrees of freedom.

k= AT (kv k) A (5.2-12)

Global tangent stiffness, ET is formed by adding the

external geometric stiffness and transforming to global

coordinates.




(5.2-12)

TT (AT (k,+ k) A+k,)T

Increments in element displacements in the local coordinates,
Au, are computed from increments in the nodal displacements in
the global coordinates, g, (which are computed in the base

program and returned to element subroutine) as shown below.

Two procedures are considered:

Procedure 1

Au =T'Agq (5.2-14)

where I1 = transformation matrix for the current (beginning of

the step) orientation of the element.

Procedure 2

Alternatively, Au can be computed using the geometry at the

middle of the step, i.e.,

(5.2-15)

where 7 __ = transformation matrix for the middle of step

orientation of the element.




The first procedure corresponds to the Euler method and the
second to the midpoint method. The midpoint method is a

predictor-corrector method and is of the second order.

Increments in nodal forces are computed using Eq. 5.2-12.

BP = ATk, + k) AA U (5.2-16)

Nodal forces are updated.

(5.2-17)

current forces.
increment in nodal forces.

final forces.

Orientation of the element axes is updated as follows:

The element x axis is assumed to pass through the element ends.
The final positions of the element ends are determined from their
current positions and the increments in end displacements; thus,

the orientation of the element x axis is determined.




The orientation of the element y and z axes are considered next.
For simplicity, first consider the 2D case shown in Figure 5.2-9.
The final position of the element x axis can easily be

determined.

The element y axis remains in the'xy plane and its final
orientation is perpendicular to the final orientation of the x
axis. Orientation of the element z axis does not change and
remains perpendicular to the xy plane. This process can be

expressed by a single rotation as follows:

(5.2-18)

(3x3) direction cosine matrix of the element local

axes for configuration k.

rotation matrix.

[ cosa, sina, O]

-sina, =-cosa, O (5.2-19)

| O 0 1

where a, = angle between xy and xg,j.

direction cosine matrix of element local axes for

configuration k+l.




Note that the increments in nodal rotations do not affect the

final orientation of the element axes.

Next consider the same 2D example, but assume that some small end
rotations (3, and ;) along the xg are present as shown in
Figure 5.2-10. Orientation of xg4] can be determined as before.
The new orientation of the y axis will be inclined to the XY

plane.

It is assumed that the inclination angle of the element y axis to
the XY plane, angle B, is the average of the longitudinal

rotations 3, and B;, i.e.

To obtain the final position of the element axes, first the

element axes are rotated about xk by the angle B, then a second
~rotation by the angle a (as in the previous case) in the XY

plane is performed.

Therefore,

Leep = B, (5.2-20)

where Lk, tk4+] and ¢ are defined in Eq. 5.2-19 and B = matrix

of longitudinal rotation
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cosB sinp O

-sinB cosB 0

0 0 1

Note that the second rotation does not induce any longitudinal

rotation. Also note that the nodal rotations in the XY plane do

not affect the final orientation of element coordinate axes.

Now consider the 3D case as shown in Figure 5.2-11. The final
orientation of the element axes are determined (as with the 2D
cases considered above) by successive rotations. First, nodal
rotations in global coordinate axes are transformed to element
Tocal xg axis (at current position) to compute the longitudinal
rotations R; and B,. Coordinate axes are then rotated by the

average nodal longitudinal rotation

B: + B,
2

Next, element axes are rotated by the angle a, (the angle

between xy and xk41) about an axis which is perpendicular to both

the current and the final positions of element x axes. Therefore

Leep = d B, (5.2-22)

where B, g and ty4) are defined in Eqs. 5.2-21 and 5.2-5.
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matrix of rotation about an axis perpendicular to Xk

and Xk41-

cos a, ny sina, -n, sina,;
. 2 2
“Rgsina, n; + n3cosa, n,nz(l-cosa,)

. 2
| npsina, ny,nz(l-cosa,) nZ + p? cosakj

(5.2-23)

(0, n2, n3) = unit normal to xk and xg4].

Components measured in current

coordinate axes.

a, = angle between xg and Xg4j.

Note that the second rotation as shown in Figure 5.2-9 will not

induce any additional longitudinal rotation.

In the procedure outlined above, it is assumed that the element
will undergo a longitudinal rotation equal to the average nodal
longitudinal rotations referred to the current position of the
element x axis. This procedure is approximate, since the
orientation of the element x axis changes from xi to Xk+1 Within
a step. A more accurate procedure may be devised by applying the
increment in displacements and rotations in a number of steps. A

two-step procedure as follows is considered here.




In this two-step procedure, the element axes are first rotated by
the angle a,/2 (by the same procedure as explained for the above
3D case, but with no Tongitudinal rotation) to obtain the middle
of step orientation of the element x axis. Then the element

nodal rotation increments are transferred to the middle of the
step x axis to compute the longitudinal rotations B, and B;.
Finally, a third rotation, similar to the first one, by the angle
a is applied to obtain the final position of the element local

axes. In matrix notation,

(5.2-24)

t, and tk+1 are defined in Eq. 5.2-19 and 5.3-21.

and d, = rotation matrices similar to Eq. 5.2-23.

Note that a,/2 is used and that

d, # d,due to different n vectors.

Both procedures as given by Eqs. 5.2-22 and 5.2-24 are

implemented in the program.

In the second procedure for computation of the element
deformations, the middle of step direction cosine matrix is used.
The middle of step direction cosine matrix (tms) is computed as

follows:

= B(®B/2)d, ¢,




6.

where ty and d; are defined in Eq. 5.2-19.

B(B/2) = is as defined in Eq. 5.2-21, with /2 angle

of longitudinal rotation.

Nodal Toads in equilibrium with element nodal forces are computed
as follows and returned to the base program.
Q = T" P (5.2-26)

equivalent nodal loads.

coordinate transformation matrix referred to end of

step (final) position of the element axes.

updated nodal forces.




5.3 Linear Beam

The three-dimensional linear beam element is a straight member of uniform
cross-section capable of resisting axial force, torque and bending
moments. This element can be arbitrarily oriented in space and is
defined by three nodes i, j and k. Nodes i and j define the centroidal
beam axis or the Tocal-1 axis. The 2-axis is defined normal to the
l-axis and resides in the plane containing the k-node and the 1-axis.

The Tocal-3 axis is defined orthogonal to the local 1 and 2 axis, using

the right hand rule.

The element forces and deformations are defined as follows for the i and

J ends, respectively.

Deformations Forces
Axial uj, uy P1, P7
2-axis shear u2, ug P2, Pg
3-axis shear uz, ug P3, Pg
Torque ug, ujp P4, P10
2-axis moments ug, uj] Ps, P11
3-axis moments ug, u)2 Pe, P12

The end deformations u; through ujp are indicated in Figure 5.3-1. The
corresponding forces are not shown; however, the positive force and

deformation directions coincide.

5.3.1 Element Stiffness Matrix

The beam element stiffness, @, in the global coordinate system is given

by
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T" k T (5.3-1)

The matrix I transforms the local stiffness k to a global orientation for

assembly into the global stiffness matrix.

The element local stiffness matrix, k, is symmetric and is defined as

Symmetric

axial stiffness

12E1,

ETTPRY 2-axis shear stiffness
2




12E1,

k3 = = = 3-axis shear stiffness
13(1+64)
k4 = %f = torsional stiffness
6EI, .
k6 = > = flexural (about local-2 axis) -
L2(1+63)
shear coupling stiffness
(4+03)E1, ' . ' .
k6 = ey - flexural stiffness about local-2 axis
6El, .
k7 = = = flexural (about local-3 axis) -
L2(1+65) .
shear coupling stiffness
(4+4,)El, . .
k8 = ey = flexural stiffness about local-2 axis
(2'¢3)512
k9 = L(1+85)
(2‘¢2)E,3
k10 = ST

The shearing deformation terms are defined as follows:

o 12E1,
2 = 2
Ga,,L

12E1,

¢3 = cA. L2

&3
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where A,, and A,, are shear areas for element 2 and 3 axes. Shear
deformations may be neglected by specification of ¢, or ¢, equal to

zero.

The transformation from global to local displacements and forces, given

by T in Eq. 5.3-1, is obtained as follows:

The Tocal element axes are defined by three unit vectors sj, s2, and s3,

and the subscript denotes the local axis.

The s3 vector is given by the cross product of S] and the vector, g,

between the i and k nodes.

The vectors s, and g are defined by:

unit vectors in the global directions,

respectively.




[\,

N
|

N

T T T T
_ Gx _ Xk-Xl
gx Lg Lg
G, Yy - Y,
g g
_ Gz _ Zk_Zl
gZ Lg Lg
where
L = 12 + [Z2 + ]2
lg = G2 + GZ + G2
Hence
§l Xg l -~ - IE
s, = = I + m + n
Sa |§] X gl 3 3 J 3

The s, unit vector resides in the same plane as g and s, and is

orthogonal to s, and s,

The s, unit vector is given by the cross product

S, = S, Xs, = 1,1 + my,j + n,k
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{. The direction cosine matrix t is defined by

The local to global transformation matrix a is given by (12x12)

The global stiffness can then be formulated as:

k T

12x12  12x12




5.4 Inelastic Three-Dimensional Beam-Column Element

This is intended primarily for modeling inelastic effects in beams and
columns. The element takes account of moment-force interaction for
columns and of bending moment interaction for biaxial bending. Yielding
is assumed to take place only in concentrated (i.e., zero length) plastic
hinges located at the element ends. The part of the element between the

hinges is assumed to remain linearly elastic.

Initial elastic stiffnesses must be specified for axial extension,
torsional twist, and bending about two axes. Flexural shear deformations
and the effects of eccentric end connections can be considered, if
desired. The element strengths may be different at the two ends, and the
elastic stiffnesses can include the effect of varying cross section along

the element length.

5.4.1 Element Features

The element may be arbitrarily oriented in space but must be

straight.

Inelastic behavior is confined to zero-length plastic hinges at

the element ends.

The hinges are assumed to have rigid-plastic-strain-hardening
behavior. Strain hardening stiffnesses must be specified for the
moment-rotation and force-extension relationships of the hinges.

Multi-linear relationships (maximum four segments) are assumed.

Interaction between bending moments, torque, and axial force is

considered by means of four-dimensional yield surfaces. A




kinematic hardening rule (extended Mroz theory) is assumed for
post-yield behavior (i.e., translation of yield surface without

change of size or shape).

5. Optidns are available for small displacements, second order
(P- A) theory and full large displacement effects. Large

displacements are considered using an "engineering" theory.

6. Eccentric end connections may be specified to model rigid joint

regions.
5.4.2 Element Axes

Element properties and results are specified in the local coordinate
system x, y, z, defined as shown in Figure 5.4-1. If node K is not

specified, its location is assumed as follows:

1. If 1J is not vertical, node K is at Y = +o. The xy plane is

then the vertical plane containing the element.

2. If IJ is vertical, node K is at X = +. The Xy plane is then

parallel to the XY plane.
5.4.3 Degrees of Freedom and Forces

The element has two external nodes and two internal nodes, as shown in

Figure 5.4-2. The external nodes connect to the complete structure and
have six degrees of freedom each, namely X, Y, Z global translations and
X, Y, Z global rotations. The element nodal dispTacements in the global

coordinates are written as
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g = {q, .... g3} _

After deletion of the six rigid body modes for the complete element and
transformation to the local element coordinates, the six deformation
degrees of freedom shown in Figure 5.4-2(b) remain. Each hinge has four
deformations, namely an axial deformation plus rotations about each of

the local x, y, z axes (i.e., shear deformations in the hinges are zero).
The transformation from global displacements to element deformations is:

v = agq (54-1)
in which

yT [vi, v2, ..., vg] = element deformations (Figure 5.4-2(b)).

ql [a1, 42, ..., g12] = element nodal displacement

(Figure 5.4-2(a)).
and the transformation matrix a is well known.
The element internal degrees of freedom w are shown in Figure 5.4-3.

The element nodal forces corresponding to the internal degrees of

freedom, E, are written as
E = {Myi Myj Mzi sz Mx Fx}T
5.4.4 Element Stiffness -

The beam element connecting the internal nodes remains elastic, but the

tangent stiffnesses of the hinges may change. For any state of the
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complete element, a 6x6 flexibility matrix is first formed for the

elastic beam in terms of the degrees of freedom wj through weg. This

matrix is then modified by adding the flexibilities of the hinges to give

a complete element flexibility matrix in terms of vy through veg. This
matrix is inverted to obtain a 6x6 element stiffness (computationally,
the Sherman-Morrison formula is used, not direct inversion). Finally,

this stiffness is transformed to the 12x12 global stiffness.

Beam Element Elastic Flexibility

The local y, z axes are assumed to be the principal axes of the beam

cross section. The local x axis is assumed to be both the centroidal

axis and the axis of torsional twist.

The incremental beam element force-deformation relationships for the

internal degrees of freedom can be written as follows:

[dM, | _ El, [Ku Ky [dw,] (5.4-2)
| dM,, | L [ Ky, Ky _dwzj
[aM,, ] _ EI, [ K. Ky.| [ dws] 5.4-3
L dM,; | L | Ky, K| |dw,] (s )
J
dM, = (—;L— dws (5.4-4)
E
dF, = TA dw, (5.4-5)
where
kij,kijskjj = flexural stiffness factors.
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Ely,EI; = effective flexural rigidities.

My,Mz; = bending moments.
i,j = element ends.
My = torsional moment.
Fx = axial force.
L = element length.
EA = effective axial rigidity.
GJ = effective torsional rigidity.

The flexural stiffness factors can be used to account for non-uniform

elements. For a uniform element, Kjj = Kjj = 4.0 and Kjj = 2.0.

Eqs. 5.4-2 and 5.4-3 are inverted to obtain flexibilities and are
modified, if necessary, to allow for shear deformations by adding the

shear flexibility matrices, fsy and fs;, where

1 1 1
L. = AL [1 1] (5.4-6)
5.4.5 Modeling of Inelastic Behavior

Yield is monitored at the potential hinges. Tangent stiffness
relationships between the actions and deformations at a yielding hinge
are established using a plasticity theory which is an extension of the
Mroz theory for yield of metals. Each hinge is initially rigid, so that

the initial stiffness of the complete element is the stiffness of the
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elastic beam. As the moments and forces at the element ends (the hinge
actions) increase, the hinges can yield, causing a stiffness reduction in
the element. Under increasing deformation, the hinges strain harden,
following multi-linear action-deformation relationships. If the actions
at a hinge decrease, the hinge becomes rigid again and the element
unloads. The overall element behavior is thus muiti-linearly inelastic,

as i]]ustrated in Figure 5.4-4.
Hinge Properties

The rigid-plastic-strain-hardening relationships between hinge actions
and deformations must be defined for the two hinges. The relationships

at the two hinges in any element may be different, if desired.

Relationships as shown in Figure 5.4-5 must be defined for each of four

action-deformation pairs, namely

1. Bending moment, My, and the corresponding rotation, ©

y e

2. Bending moment, Mz, and the corresponding rotation, 6

3. Torque, My, and the corresponding twist, ¢, .

4. Axial force, Fy, and the corresponding extension, 6,.
Each relationship is rigid-plastic-strain-hardening and may have up to
three Tinear segments, as shown in Figure 5.4-5. The relationships may
be of different shapes for each action. For material with an
elastic-perfectly plastic stress-strain relationship, the torque-twist

and force-extension relationships will be rigid-perfectly plastic,
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whereas the moment-rotation relationships will usually exhibit strain
hardening behavior (Figure 5.4-6). It is required that the deformations
at changes in stiffness have the same ratios for all relationships, as
indicated in Figure 5.4-4. This restriction is necessary to avoid

inconsistencies in the plasticity theory.

It may be noted that the assumption of a zero-length hinge implies
infinitely high strains as a hinge deforms. This is inherent in any

plastic hinge type of theory.
Interaction Surfaces for First Yield

The actions My, Mz, My, and Fy interact with each other to produce
initial yield of the hinge. The interaction effect is determined by a
yield (interaction) surface. To allow for a variety of applications,
provision is made in the theory for five different yield surfaces. These
surfaces are all four dimensiona] (i.e., My, Mz, My, and Fy), and hence,
cannot be shown easily using diagrams. The surfaces differ, however,
mainly in the way in which the axial force interacts with the three
moments. Hence, the differences can be illustrated using the
three-dimensiSnal diagrams in Figure 5.4-7. 1In these figures, the Mj and
Mj axes indicate any two of the moments, and the Fy axis indicates axial
force. The origin of the yield surface can be shifted along the axial
force axis, if it is desired to have greater compressive capacity than
tension capacity. The F-M interaction surface can then approximate that
for a reinforced concrete column. The equations defining the yield

surfaces are shown in the figure.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2,

3 and 4 allow more realistic modeling of moment-force interaction for
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cases in which axial force effects are substantial. For all of these
four surfaces, the interaction among My, M, and My is elliptical and only
the force-moment interaction changes. Surface 5 is of a different form
than the other four and is included for greater generality in special

cases.
Interaction Surfaces for Subsequent Yield

For modeling a hinge with nonlinear material properties, it is assumed
that the behavior is rigid-plastic-strain-hardening for each action
individually, as shown in Figure 5.4-5(a). In one dimension, the
rigid-b]astic-strain-hardening behavior can be modeled using a series
rigid-plastic subsprings, as shown in Figure 5.4-5(b). This model can be
extended to the multidimensional case using a series of rigid-plastic

"subsprings," with the yield of any subhinge governed by a yield surface.

First yield occurs at the first subhinge and is governed by the initial
yield surface. For each change of stiffness, there is a corresponding
yield surface, each corresponding to a subhinge. These surfaces are
assumed to have the same basic form as the surface for first yield.
However, because the action deformation relationships may be of different
shape for each action, the surfaces for the first and subsequent

subhinges will not have, in general, identical actual shapes.
Plastic Stiffness and Torque

The hinge yield strengths and the plastic stiffnesses of the hinge

action-deformation relationships (Kpl, sz and Kp3 in Figure 5.4-5) must




be specified to provide appropriate post-yield stiffening of the complete
element. The procedure is straightforward for axial force and torque but

more complex for bending.

Consider axial force, and let the force-extension relationship for the
complete element be as shown in Figure 5.4-8(b). The steps are as

follows:
a. FElastic axial rigidity of beam = EA = Kfy - L.
b. Strength at first yield surface = Fy1.

c. Plastic stiffness after first yield surface =

d. Strength at yield surface i = Fyi.

e. Plastic stiffness after yield surface i =

K _ Kegi - Krgay
pi
Kei = Krueny

The same procedure applies for the torque, Mx, as follows (Figure
5.4-8(d).

a. FElastic torsional rigidity of beam = 6J = Kyp - L.
b. Strength at first yield surface = Ty1.

c. Plastic stiffness after first yield surface =
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Ky - K
% _ 71 T2

pl % _
K11 = Krz

d. Strength at yield surface i = Tyi.

e. Plastic stiffness after yield surface i =

K _ Kq - K1,
P Kty = Krgen

Plastic Stiffnesses: Bending

A complication in specifying the flexural plastic stiffnesses arises from
the fact that moment-curvature nonlinearities are modeled using
concentrated hinges. In an actual beam, the moment typically varies
along the length, and plastic deformations occur over finite regions.
Consequently, the flexural stiffness depends on the moment variation
along the beam. In a concentrated hinge model, it is not possible to
account for all possible moment variations; and hence, assumptions must

be made in specifying the hinge properties.

Three options are available in the computer program for assigning bending
stiffness properties to the hinges. The first option is for a uniform
beam with essentially constant moment along the element (Figure 5.4-9(a).
This option is applicable, in general, only for a structure which is
modeled using short beam-column elements, such that the bending moment
does not vary greatly over a single element. The relationships between
bending moment and end rotation for the initial loading of the element is
as shown in Figure 5.4-9(b). The steps in establishing the hinge

properties are as follows:




(o) BEAM WITH CONSTANT MOMENT

(b) MOMENT-ROTATION RELATIONSHIP

FIG. 5.4-9 MOMENT-ROTATION RELATIONSHIP




Elastic flexural rigidity of beam = EI = Ky; © L/2.

Shear rigidity of beam assumed to be infinite (no shear

deformations).
Hinge strength at first yield = My1.
Plastic stiffness after first yield surface =

K Y
K = M1 M2
KMl - KMZ
Strength at yield surface i = Myj.

Plastic stiffness after yield surface i =

KMi ) KM(iol)

K . =
Ky - Kumgeny

The second option is applicable for a uniform beam in which a linear
variation of bending moment can be assumed over the element length, with
equal and opposite values at the ends (Figure 5.4-10). This option will
typically apply for columns in an unbraced frame building. An equivalent
cantilever for each half of the element is used, as shown in Figure
5.4-10(b). It is required that the relationships between the tip load
and tip displacement of the cantilever be known (Figure 5.4-10(c). This

relationship can then be used to obtain hinge stiffness as follows:

a. Elastic flexural rigidity of beam = EI = KyL3/24.




L/2

I

(c) P-8 RELATIONSHIP

FIG. 5.4-10. REPRESENTATION OF CANTILEVER BEHAVIOR




b. Shear rigidity of beam assumed to be infinite (no shear

deformations).
c. Hinge strength at first yield = Py1 - L/2.
d. Plastic stiffness after first yield surface =

Kl * Kz ¢ L
2(Ky - K3)

e. Strength at yield surface i = Py1 - L/2.
f. Plastic stiffness after first yield surface i =

K _ Ki* Kiey + L
i 2(K: - Kiy)

For these first two options, the computer program calculates the Kp
values, given the moment-rotation relationships (for Option 1) or
Toad-deflection relationship (for Option 2). The third option provides
the user with more flexibility by requiring that the EI/L and Kp values
be specified directly. In addition, with this option it is not necessary
for the element to be of uniform section. Flexural stiffness
coefficients Kji, Kjj and Kjj, which depend on the variation of the beam
cross section, may be specified (for example, for a uniform element,

Kij - Kjj = 4.0 and Kjj = 2.0). Also, an effective shear stiffness (GAg)

can be specified.
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Plastic Flow

Interaction among the actions is considered as shown diagrammatically in
Figure 5.4-11. Yield begins when the yie]d surface of the first subhinge
is reached. The surface then translates in action space, the motion
being governed by the plastic flow of the first subhinge. Translation of
the first surface continues until the second surface is reached. Both
surfaces then translate together, governed by a combination of plastic
flow on both yield subhinges. For any subhinge, plastic flow is assumed
to take place normal to the yield surface of that subhinge. If two or
more subhinges are yielded, their yield surfaces move together, and the
total plastic deformation is equal to the sum of the individual plastic
deformations for each subhinge, directed a]ohg the normal directions of
their respective yield surfaces at the action point. After some
arbitrary amount of plastic deformation, the situation might be as
illustrated in Figure 5.4-11(b).

On unloading, the elastic stiffness values, Kj, govern until the yield
surface of the first subhinge is again reached. The surface then

translates as before.
Hardening Behavior

After first yield, the yield surfaces of the yielded subhinges are
assumed to translate in action space, obeying a kinematic hardening rule
(translation without change of shape or size). An extension of the Mroz
theory of material plasticity is used to define the hardening behavior.
Because the yield surfaces of the yielded subhinges are generally not
exactly similar, overlapping of the surfaces can occur. As a result, the

hardening behavior is more complex than in the basic Mroz theory. For
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{
example, in Figure 5.4-11(b), the current action point, A, Ties on yield

sprfaces ¥S1, YS2 and YS3. Hence, all three subhinges have yielded, and
the direction of plastic flow is a combination of the normal vectors ni,

nz and p3. Details of the theory are given by Chen (1982).
5.4.6 End Eccentricity

Plastic hinges in frames and coupled frame-shear wall structures will
form near the faces of the joints rather than at the theoretical Jjoint
centerlines. This effect can be approximated by postulating rigid,
infinitely strong connecting links between the nodes and the element

ends, as shown in Figure 5.4-12.
5.4.7 Initial Forces

For structures in which static analyses are carried out separately,
initial member forces may be specified. The sign convention for these
forces is as shown in Figure 5.4-13. These forces are not converted to
loads on the nodes of the structure, but are simply used to initialize
the element end actions. For this reason, initial forces need not
constitute a set of actions in equilibrium. The only effects they have
on the behavior of the system are (a) to influence the onset of

plasticity and (b) to affect the geometric stiffnesses.
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5.5 Three-Dimensional Gap Friction (Support Element)

This element is designed to model contact problems. It can only sustain
loads in compression, and has no stiffness in tension. Also, it models
friction caused by the normal reaction on the element. The limiting
frictional force is directly proportional to the value of normal

reaction.
5.5.1 Applications

The element is capable of modeling contact problems such as the support
of flowlines on the seafloor. The inelastic nonlinear spring in
compression allows better modeling of nonlinear soils supporting the
flowlines. An initial gap allows modeling of an uneven seafloor for

unsupported sections of the flowlines.
5.5.2 Element Features
The element has the following features:
1. Arbitrary orientation of the bearing plane in 3-D space.

2. LZero stiffness perpendicular and tangential to the bearing plane

when the gap is open.

3. Trilinear inelastic force-deformation re]ationship for
deformation perpendicular to the bearing plane following gap

closure.

4. Frictional behavior tangential to the bearing plane when the gap

is closed, with constant friction coefficient.
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5. Linear rotational springs in the global coordinate systems.
5.5.3 Element Properties

The element resists deformation normal and tangential to a specified

bearing plane. The bearing plane may be arbitrarily oriented in space.

The element consists of three components, namely (a) a bearing component,
acting normal to fhe bearing plane, (b) a friction component, acting
parallel to the bearing plane, and (c) a rotational component providing
rotational stiffness in the global directions uncoupled with the

direction of the bearing plane.

The element is connected to the structure at node N (as shown in Figure
5.5-1). The bearing plane is defined by three nodes, I, N and J, as
shown. The normal component is oriented along the local z-axis, normal
to the bearing plane. The local x-axis lies in the bearing plane,
direction from node J to node N. The local y-axis, also in the bearing

plane, is perpendicular to the z-x plane.

The force deformation relationships of the normal component is shown in
Figure 5.5-2. The stiffness in tension is zero. The element stiffness
after the closure of the gap is modeled by a trilinear inelastic
force-deformation relationship. If the element yields in compression
upon unloading, the element unloads with the initial stiffness. The size

of the initial gap is increased for further reloading.

The force-deformation relationship of the tangential component is as
shown in Figure 5.5-3. For a force less than that required to cause
slip, the behavior is elastic with stiffness Kf. When the force equals

the slip value (normal component force multiplied by the friction
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coefficient), slip takes place. If the force in the normal component is
zero (i.e., open gap) both the normal and tangential components have zero

stiffnesses.
5.5.4 Element Stiffness

The element has three local deformations, namely (a) deformation Vg,
along the local z-axis of the normal component; and (b) deformations Vy
and vy along the local x and y axes, respectively, of the tangential
component. The increments in element deformations are related to the
increments in nodal displacements, referenced to the global coordinates

as follows (Figure 5.5-4):

in which

(Vs vy U,) | (5.5-2)

T

= (9. 49, q.) . (5.5-3)

The transformation matrix I contains the direction cosines of the local

X-y-z axes with respect to the global X-Y-Z axes.

The tangent force-deformation relationship for the normal component is

dF, = K, du, (5.5-4)
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in which dF; is the increment in force, and K; is the tangént stiffness
of the normal component. The tangent stiffness, Kz, may be equal to
zero, K1, K2 or K3, depending on the state of the normal component
(Figure 5.5-2).

The force states required to produce slip of the tangential component are
defined by a "slip circle" in the bearing plane (Figure 5.5-5). The
radius, Fyx, of the circle is equal to the normal component force

multiplied by the friction coefficient.

If the local x and y forces, Fy and Fy, of the tangential component are
such that (F,)? + (Fy)? is less than Fg, the behavior of the

tangential component is elastic. The tangent stiffness of this component

is then given by

dF, K, 0 du,
= (5.5-5)
0 K, dv

Yy

This tangent stiffness assumes two springs, each with stiffness K¢, along

the Tocal x and y axis in the bearing plane (Figure 5.5-5(a)).

If the forces Fy and Fy are such that V(F )2 + (F,)? is equal to Fq,

the tangential component is assumed to be slipping along the radial
direction of the slip circle (Figure 5.5-5(b)). The tangent stiffness of

the component is then given by

daF, 0 0 du,
= (5.5-6)
dF, 0 K, dv,
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in which r and t are the radial and tangential directions, respectively,

at the point on the clip circle (Figure 5.5-5(b)).

This tangent

stiffness assumes a spring with stiffness Kf along the tangent to the

slip circle.

given by

dF,

dr

Yy

in which cos a” = Fy/Fg; and sin o’ = Fy/Fs.

The tangent stiffness in the local x and y axes is thus

sin?a’

-sina’” cosa’

-sina’ cosa’

K

K

XX

Xy

K

K

Xy

Yy

(5.5-6)

The tangent stiffness matrix of the complete element, Kxyz, is obtained
by combining Eqs. (5.5-4) and (5.5-5) or Eqs. (5.5-4) and (5.5-7), giving

or

0
Ky
0
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by

T (5.5-9)

In addition, three uncoupled global rotational springs are added to the
element stiffness. The global rotational springs are user defined. The

complete element stiffness is given by

in which kyx, kyy and kz; are rotational springs in the three global

directions.
5.5.5 State Determination

Increments of element deformation are computed using Eq. 5.5-1. The
force increment in the normal component is then obtained by following the
force-deformation relationship shown in Figure 5.5-2. The computation of
force increments for the tangential component is more complex, because
during any load or time step the state of force can change in many ways,

and because the slip circle may change in size.

As an example, consider Figure 5.5-6. At the beginning of the step, let

the tangential force be at point A, within the slip circle, so that the
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state is elastic. The radius of the slip circle is equal to the normal
force at the beginning of the step multiplied by the friction
coefficient. Assuming Tinear behavior within the step, let the
tangential force at the end of the step be at point B. This point'is
outside the slip circle, which is incorrect. If the tangential
deformations are assumed to increase proportionately, and if the slip
circle is assumed not to change, point C on path AB can be found such
that the tangential force state lies on the slip circle. For the
remainder of the deformation increment, slip occurs, with zero restraint
along the radial direction at any time. The tangential force increment
for this remainder of the deformation increment is computed uSing Eq.
(5.5-7). In general, the coefficients in Eq. 5.5-7 will not be constant
throughout the step. In the computer program, however, constant
coefficients are assumed, and a force state at D is found. This point
lies outside the circle. Further, in computing the forces at point D, it
has been assumed that the slip circle does not change during the step,
which is not generally correct. The slip circle corresponding to the
normal force at the end of the step might, for example be as shown in
Figure 5.5-6. The fores at point D must be corrected to correspond to
the new slip circle. If the force state at D is within the new slip
circle, the forces are left unchanged, and the new state is set to be
elastic. If the force state is outside the new slip circle, the forces
are scaled radially, as shown, to give point E on the slip circle, and

the new state is set to be slipping.

If Targe deformations occur within a single load or time step, this

procedure may be inaccurate, and may lead to large unbalanced loads.

5-52



5.5.6 Angle Tolerance for Stiffness Reformulation

If slip continues to occur in the tangential component over several load

steps, the element stiffness will generally change continuously, because
angle a” (Figure 5.5-7) and Eq. (5.5-7) will generally change. If the
change in a” is small, the change in stiffness can be ignored, and
computer costs for reforming the stiffness can be saved. In the computer
program, an option is provided for the user to specify a tolerance for
the angle a’. If a nonzero tolerance is specified, the element
stiffness is reformed only when the change in state is such that the
angle between the current state and that at which the stiffness was last

reformed exceeds the tolerance.




FIG. 5.5-7 STIFFNESS REFORMULATION ANGLE




5.6 Linear 4 to 8 Node Quadrilateral Element

The element may lie in any of the three global planes, except for the
axisymmetric solid element which must Tie in the XY plane with the global

Y axis as the axis of revolution.

Each element can have from four to eight nodes. The element maps into a

rectangular element in a local r-s coordinate system, such that nodes 1
through 4 are located at the four corners ahd nodes 5 through 8 are
Tocated at the midsides of the rectangle (Figure 5.6-1). The four corner
nodes must always be'specified, and any one or more of the midside nodes

may be specified.

Three different types of behavior may be specified, namely plane stress,
plane strain, and axisymmetric solid behavior. In the plane strain
formulation it is assumed that the element has unit thickness, whereas in
the axisymmetric formulation a unit radian segment (6 = 1) is
considered. The applied nodal loads for plane strain and axisymmetric
structures must be computed accordingly. In the plane stress

formulation, each element may be assigned an average thickness.

The eTement matrices (stiffness, resisting nodal loads, etc.) are
computed using Gauss quadrature integration. The integration orders
(numbers of integration points) in the local r-direction and s-directions
may be specified separately. Any integration order up to 4 may be
specified in either direction; however, 2x2 integration is recommended

for most cases.

Large displacement effects may be included or ignored. If large

displacements are considered, a total Lagrangian formulation is used.




1-9-6-0\uvIS~XI(\p 10’

AN3WITI JLINId TvHILVIHAVNO TVNOISNINIA-OML L-9'S Oid

Wwaj)sAg s-1 wa)sAs z-A-Xx
jedo7 ut juswsig e (q) leqojo ut juswajg ge (e)




. 5.6.1 Element Features

The element has the following features:

Two-dimensional orientation in any of the three global planes
except the axisymmetric solid element which must 1ie in the Xy

plane.
Plane stress, plane strain or axisymmetric behavior.

Isoparametric quadrilateral element with variable number of nodes
(from 4 to 8).

Variable Gauss integration order (from 2 to 4 points).

For dynamic analysis, damping proportional to initial elastic

stiffness and/or current tangent stiffness.
Isotropic, linearly elastic material.
5.6.2 Element Stiffness

The strain-displacement relationships and element stiffness matrices are
developed as the structure deforms from a known state (configuration 1,
time t) to a neighboring state (configuration 2, time t + 6t). ATl
strain and stress quantities in the deformed configuration are referred

to the undeformed state (configuration 0, time = 0).




Shape Functions

The X and Y displacements at any point within the element in the current
deformed state (state 1) u, and u, are related to the nodal

displacements, 1,, as follows:

ul N 0] (a,.
= (5.6-1)
u, 0 N1 \q,
or
El = N* g]

where N is the vector of shape functions and N* is the shape function
matrix. Similarly, displacement increments are related to the nodal

displacement increments as

Au = N* A

K

For an 8-node isoparametric element (Figure 5.6-1), the shape functions

can be written as follows:

1. For corner nodes (m=1to 4; rp=11 and S = + 1)

N™(r,s)

1. . N _ g2
4(1 rr,) (1 $S,,) 4(1 rrp) (1 s9)

- ;l; (1 -r% (1 + ss,) (5.6-2)
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. 2. For midside nodes (m = 5 to 8)

N™(r,s) %(1 +rr,) (1 - s9),

(%)
3
]

0 (5.6-3)

N™(r,s)

%(1 -r2) (1 + ss,), rm = O (5.6-4)

For a variable (4 to 8) node element, the shape functions for the midside
nodes are included only for those nodes which are present. For the
corner nodes, terms involving (1 - s2) and (1 - r2) in Eq. 5.6-2 are
included only if corresponding midside node(s) are present (e.g., if only
node 5 is present, the shape functions for nodes 1 and 2 will have only

the corresponding terms included).

. In subsequent relationships, derivatives of shape functions with respect
to the global X and Y axes will be needed. These derivatives are

obtained by the usual Jacobian transformation.

Strain-Displacement Transformation

The total strain increment, €, is decomposed into linear and nonlinear

components, e and mn, respectively. That is

exx exx T]XX
Ey}’ eyy n}‘y
= + (5.6-4)
2€xy 2exy 2nxy
EZZ _ezz nZZ
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For plane stress (strain) behavior, terms involving stress Szz (strain

€zz) are neglected, and appropriate modifications are made to the

stress-strain relationship.

The linear component is related to the noda] displacement increments

through the following relationship:




3 (Auy) 2 (Au,) 9 (A 2 (A A
)T = < (AU 9 (Buy) 9 (Bu,) 2 (Au,) 4
ox oy 5% oy X

From a combination of Egs. 5.6-5 and 5.6-6, the following strain-

displacement relationship is obtained

N, zxg

(5.6-10)




Element Stiffness Matrix

The element stiffness matrix is given by

(5.6-11)

in which C is the constitutive matrix, and integration is carried out

over the volume Vo of the element in the undeformed state.

The integration in Eq. (5.6-11) is carried out numerically using Gauss

quadrature.
Geometric Stiffness Matrix

The nonlinear component of the strain increment is given by

l[(a(Aux))z . (a(Au,))z
Thex 2 dx ox
(%522 ]
ox

(5.6-12)

a(Aux)) (a(Aux)) . (a(Auy)) (a(Auy))
ox oy ox oy




The element geometric stiffness kg is obtained from the following virtual

work equation.

(69> [k Kq) = f(Sixénxx+S;y6n,y+28iy6nxy+8i26nzz)dv

4

o

(5.6-13)

in which 6(-) is a variation on the undesignated variable, and Slxx,

Slyy, Slxy, and S1,; are stresses in the deformed state at time t. By

combining Eqs. 5.6-12 and 5.6-13 and simplifying, it can be shown that

k, = / &T S! N, av (5.6-14)

v

in which the matrix N, is given in Eq. 5.6-9 and the matrix :§‘ is as

follows:

[ S!

XX

1
Sy

0 (5.6-15)

0]

1
Sz

As for the element stiffness matrix, the integral in Eq. 5.6-14 is

evaluated numerically using Gauss quadrature.




Equilibrium Nodal Loads

Nodal loads in equilibrium with the state of stress in the deformed state

at time t are given by

R! =f (8" 3' av (5.6-16)
R , (B) S

o

in which §1 = {Si. Si, SL, SL)7; and the strain-displacement matrix

§‘ is given in Eq. 5.6-10. Again, the integral in Eq. 5.6-16 is

evaluated numerically.

Material Models
The constitutive relationship between stress and strain can be written as
r-Cll C12

C22

Symmetric

(5.6-17)

It should be noted that for large displacements, the above relationship
is assumed to be between the (second) Piola-Kirchhoff stress and

Green-Lagrange strain. The (4x4) matrix given in Eq. 5.6-17 is for




axisymmetric behavior. To obtain the constitutive matrix for plane

stress the matrix is condensed to a (3x3) matrix using the condition that

stress szz = 0. For plane strain, E;; = 0, and the last row and column

are ignored.

The matrix coefficients in Eq. 5.6-17 are as follows:

Cll

(5.6-18)

CIB

in which

vE

and >\' = (1+v)(1~-2v)

Young’s modulus of elasticity.

Poisson’s ratio.




5.7 Linear Beam Wave Loading Element

This element is intended to model pertinences which are subjected to wave
Toads but do not contribute to the stiffness of the structure. Examples
of such nonstructural members are boat landings, barge bumpers and

disposal caissons. This element is called the 1inear beam wave loading

element since it is modeled as a linear beam element with zero stiffness.




5.8 Marshall Strut

Since postbuckling of all but very slender elements is poorly represented
by the non]ineér truss element, an element that will adequately follow
the inelastic bending and straightening of a strut after buckling is
included in the element 1ibrary. The response of this strut to axial

loads is defined in Figure 5.8-1 by the envelope curve ABCDFA, and the

additional lines DED and AG.‘ These points are all input by the user.

The basic response consists of

1. Linear elastic extensions of the straight strut, shown as AB.
2. Inelastic buckling under compressive load, as in BC and CD.

3. Inelastic straightening along DFA.

Continued compressive loading after reaching the point D, results in
reversible axial shortening (with very large inelastic bending) under no
load along DED.

More complex loading patterns may be derived by following two basic

assumptions:

When unloading or loading away from an envelope curve, the strut
follows the 1line colinear with the point A and the envelope
reversal point. If the other envelope is intersected, continued

unloading or loading is along the envelope path.

The element loads beyond its first tension yielding (Py) without

strain-hardening, and the whole envelope shifts to the right.
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By following these rules, any complex Toading and unloading sequence may

be simulated. Figure 5.8-1 indicates various such sequences.
5.8.1 Element Stiffness Matrix

The element stiffness is formulated in the local coordinate system, then
transformed to the global coordinate system. The stiffness is the slope

of the appropriate trace on the stress-strain diagram. The envelope

stiffnesses are user-defined and the stiffnesses between envelopesw.are

computed as shown in Figure 5.8-1. The stiffness will be negative when

following the envelope BCD.
5.8.2 Element Loading

Initial axial forces can be specified as in the case of the linear truss

and the nonlinear truss.
5.8.3 Energy Ductility Ratios and Failure Algorithms

Energy ductility ratios are computed and printed for each element from

(5.8-1)

energy ductility ratio.

accumulated energy absorbed within the hysteresis Toops.

tensile yield Toad and tensile yield extension for each

member.




If we have a member that is subjected to a monotonically increasing load,
and has a force-deformation relationship corresponding to an elastic
perfectly plastic system, then p, reduces to the conventional definition

of ductility.

In addition, a Marshall strut can be allowed to fail. The failure

criteria used is given by

E,\? E.\?
! + 2 > ]
(ch) (Ecs)

cumulative flexural energy at plastic hinges.

a reference flexural energy for failure.
cumulative inelastic stretch energy.

a reference inelastic stretch energy for failure.

Ecf and Ecs may be input by the user directly or, for tubular sections,
are computed by the program internally. 1In the latter case, these values

are found as follows:
Flexural Energy for Failure, Ecf:

For a fixed-end beam, with plastic hinges at the ends and the middle,

failure occurs when

ch = 4pr ehinge




the plastic rotation at failure at the ends.

Mep the fully plastic moment.

Marshall [1974] has shown experimentally that

(ecr - e‘y) (Lh + Lp)

critical curvature.

additional finite hinge length to account for additional

hinge rotation observed in test results.
Lp Tength of plastic hinge.
Extensional Energy for Failure, Ecs

Marshall [1976] indicates that we can write

E, = P,(0.01L + A

joint )

tensile yield load.
length of member.

joint distortion at failure.




The above experimental results can thus be used to determine Ecf and Ecs.

The failure process is as follows. Once the strut has failed, the force
(ordinate) of the envelope curve is reduced at each subsequent time step
by a percentage which is input by the user. This leads to a progressive
failure of the element that is numerically stable. When the curve has

dropped to 1/100 of its original size, the stiffness is removed entirely.




5.9 PSAS (Pile Soil Analysis System) Element
5.9.1 Introduction

The PSAS element is used to model the soil-pile interaction in a
foundation system. Pile-soil-pile interaction (displacement of one pile
due to the displacement of a neighboring pile) is not taken into account
by PSAS.

The PSAS element is a line element with two nodes. One of the two nodes
is fixed because of the boundary condition of zero soil deformation at an
infinite distance from the pile and the other node is attached to the
pile (Figure 5.9-1). The PSAS elements model the soil resistance to the
pile displacement by load-deflection relationships in the axial direction
(shaft T-Z curves and tip Q-Z curves) and in the lateral direction (P-Y

curves).

The basic load deflection relationship is called the "backbone curve" and
represents the virgin soil (loaded for the first time) deformation under
a load applied at a reference rate. The load deflection relationship
under actual loading conditions is obtained by adjusting the backbone
curve to taken into account the hysteretic behavior, cyclic loading

effects, loading rate effects and gapping effects.
5.9.2 Backbone Curve

The backbone curve used by PSAS to define the load deflection
relationship is typically a multilinear curve defined by up to 9 points
as shown in Figure 5.9-2. The user can specify the input for PSAS to be
either Automatic (where only basic pile and soil properties are input) or

generalized (where the points defining the backbone curve and damping
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effects of each element are input). For an Automatic input, the backbone
curve is constructed according to the relationships specified in the
American Petroleum Institute (1987) Recommended Practice for Planning,

Designing and Construction of Fixed Offshore Platforms.

In the rest of this section, the construction of the backbone curves for
different types of soil according to the API guidelines will be

discussed.
API (1987) Load Deflection Curves

The API guidelines provide the formulae needed to construct the backbone
curves for lateral (P-Y) load-deflection relationships, and several key
values for the vertical-shaft (T-Z) and vertical-tip (Q-2)
load-deflection relationships. Stiff clay requires a more complex

formulation which the API references to Reese and Cox (1975).

PSAS also uses this reference to construct the appropriate backbone

curves.

API (1987) and Reese and Cox (1975) provide techniques for constfucting

continuous curves. These curves are approximated in PSAS as
multi-segment curves, where the last segment of each curve is always
perfectly plastic (zero-slope). Both references define backbone curves

for virgin and fully-degraded cyclic conditions with no gap.
Shaft and Tip Load Deflection Curves

The axial capacity of a pile, Qd, is the sum of the shaft resistance, Tg,

and the end bearing resistance, Qp:




unit skin friction along the pile shaft.
embedded shaft area of the pile.

unit end bearing capacity.

A, gross end area of the pile.

The values of f and g are specified per API (1987) for both cohesive and

cohesionless soils. The disp]acéments at which T¢ and Qp are mobilized,

however, are not defined by API. The next sections discuss how PSAS

forms the T-Z and Q-Z curves.
Shaft Load-Deflection Curve (T-2)

The shaft load deflection (T-Z) curve is shown in Figure 5.9-3. Notice
that a compressive axial 1oad on the pile (which is applied in the
negative global z-direction) produces a positive deflection in the soil

element (to the right in Figure 5.9-3).
For the compressive cycle, the behavior is characterized by five values:
Te the value of maximum shaft resistance.

Zc the displacement required to mobilize that resistance.




the displacement at which the maximum resistance starts to

decrease due to strain softening.
the residual shaft resistance.
Lyc the displacement at which that resistance is mobilized.

For the tensile cycle, the behavior can be characterized in a similar
way. In general, the five values for the tensile cycle are different

than for the compressive cycle.
Cohesive Soils - Values for Shaft Resistance

The values of Tec and Tt are calculated by PSAS per the API guidelines.

Trc in Figure 5.9-3 represents the value of the residual resistance for

the shaft after a specific deflection, Zyc, has been reached. The
residual response is not specified in API (1987); however its influence
on the overall pile behavior was found to be potentially important for
some combinations of soil-pile conditions, e.g., Murff (1980) and Kraft
et al. (1981).

Residual resistance values in the range of 0.7 to 1.0 times the maximum
static resistance were found by Coyle and Reese (1966) for piles in
marine clays with sensitivities of 2 to 4. Holmquist and Matlock (1976)
found similar values in their laboratory pile-soil tests (Ty/T = 0.87 for

static loading).

The method available for the definition of the static residual resistance

is that of a ratio of residual resistance to maximum shaft resistance
TI‘

7 - Unless soil data is available, selection of ;? should be based on

field and laboratory pile and soil test condition results.




Cohesive Soils - Control Values of Axial Pile/Soil Deflection

The Maximum Displacement Factor value in PSAS is used to define the value
of Z., where Z. is calculated by multiplying the Maximum Displacement

Factor by the pile diameter.

Values of the Maximum Displacement Factor have been found to range from
0.005 to 0.03. PSAS uses 0.01 for both tension and compression.

Cohesionless Soils - Values of Shaft Resistance

For cohesionless soils, PSAS uses API (1987) guidelines for the shaft
resistance values. The static residual resistance, Tpc, is taken as
equal to the static maximum resistance, Tc. The tensile resistance is

also taken as equal to the compressive resistance, Ty = T.
Cohesionless Soils - Control Values of Axial Pile/Soil Deflection

Similar to cohesive soils, the Maximum Displacement Factor value is also
used to define the value of Zc for cohesionless soils. PSAS uses 0.01 as

the value for the Maximum Displacement Factor.
Tip Load-Deflection Curve (Q-2)

The shape of the Q-Z curve is assumed in PSAS to be similar to

Figure 5.9-3. Very little data is available on the load-deflection
characteristics of the Q-Z curve, other than the unit bearing capacity,

g . PSAS assumes that the ultimate bearing capacity for both tension and
compression is identical and mobilized at a Maximum Displacement Factor
of 0.10.
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5.9.3 Hysteretic Behavior
Lateral Loading

At shallow soil depths along the pile, soils that are subjected to cyclic
lateral loads may form a gap between the soil interface and the pile
wall. This gap may result from a soil "wedge" being pushed up and away
from the pile during loading. At the onset of the next Toading cycle,
the pile must move through the gap and contact the soil before the soil
can resist the pile load. The depth at which this wedge-type of soil

failure can occur (and where gapping can occur) is the "critical depth".

When gapping is used in PSAS, the soil elements above the critical depth
track the gap that forms between the pile wall and soil interface. Load
reversal causes the element response to slide back through the gap with

reduced resistance until bearing on the other side of the gap occurs.

The resistance level during the gap can be set to any value.

For elements below the critical depth, where no gap is allowed to occur,
the hysteretic behavior of a PSAS element under lateral loading is shown
in Figure 5.9-4. Notice that on unloading, the origin of the P-Y curve
is shifted to the load reversal point. For a full gap (zero gap
strength) and for a partial gap (non-zero gap strength), the origin

remains at zero deformation.

Figure 5.9-5 shows the hysteretic behavior with full gap effects. For
this case, when unloaded to P = 0, some pile movement is required to pick

up the soil resistance in the direction of pile movement.
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>
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FIG. 5.9-4 HYSTERETIC BEHAVIOR-LATERAL DIRECTION, NO GAP




Figure 5.9-6 shows the hysteretic behavior with partial gap effects.
Similar to the case with full gap effects, when unloading to certain
force levels, some pile movement is required before the soil resistance
can increase. A constraint on the partial gap strength is that it be

Tess than the strength for point 1.
Axial Loading

The hysteretic behavior of the load deflection curve in the axial
direction is shown in Figure 5.9-3. Notice that the origin is shifted to

the new load reversal point every half load cycle.
Lateral-Axial Interaction Effects

When gapping (partial or full) occurs in the lateral load-deflection
(P-Y) curve, the resistance of the associated Toad-deflection (T-Z) curve
is set to zero. This represents the loss in axial strength resulting

from the soil being pushed away from the pile during lateral response.
5.9.4 Cyclic Loading Effects

Laboratory and field tests have shown that cyclic loading may cause a
reduction in the load capacity and an increase in the settlement of

piles.

A consistent feature of the cyclic response of piles is that after a full
two-way cycle, significant reduction in strength is obtained. Another

important aspect of cyclic loading is that the amount of degradation per

cycle reduces significantly after a certain number of cycles have taken
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place. This phenomenon leads to the definition of a "fully degraded
curve", where the strength remains fairly constant with continuing

cycles.

The cyclic degradation is characterized in PSAS by using a degradation
factor A, which is applied to, the current strength of the backbone
curve whenever a full two-way cycle has occurred. A full two-way cycle
is counted in PSAS whenever the total pile displacement (peak to peak)
exceeds a Significant Deflection value. In the Automatic soil generation
option, the Significant Deflection is defaulted to 2XY p where Y, is
the displacement corresponding to the load equal to 75 percent of the
ultimate capacity for any given soil element. In the Generalized soil

input option, the Significant Deflection is input by the user.

In PSAS, the following procedure ouf]ined by Matlock and Foo (1980) is
adopted for the cyclic degradation (Figure 5.9-7):

P, = Pon + (1 = AN) (Py = Poin)
where
P, = the existing ultimate strength for the previous loading
cycle.
P, = the new ultimate strength for the current loading cycle.
Pnin = the strength at the fully degraded limit.

A = the cyclic degradation factor.
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Guidelines for Selection of Lambda

The key for predicting the cyclic degradation characteristics of a given
soil/pile system is the selection of the Lambda parameter. The best
method is to use the results of an actual cyclic pile load test, with
similar soil, pile and Toading properties. Given the values of Py, P,
and P, for a load test, the appropriate value of Lambda can be back

calculated.

One common method for determining Lambda is from load test data that
gives the number of cycles required to cause 50 percent degradation.

This value of lambda can be given by:
log 2
A = 1-1007%%)
where Ng, is the number of load cycles required to cause 50 percent

degradation.

Obviously, cyclic Toad test data is not always available. In this case,
published values of Lambda can be used. Various authors have published

results of cyclic field and 1ab load tests, including:

Figure 5.9-8 shows a compilation of results derived from the cyclic axial

Toading tests performed on a small scale pile by Grosch and Reese (1980).
A typical cyclic load resulted in displacement of the pile of 10 times

the initial yield level displacement.

Figure 5.9-9 gives a compilation of results of cyclic load tests on a

variety of piles. A1l piles in these tests were repeatedly failed in
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compression. The ultimate capacity of the piles at the "nthr cycle
normalized by the capacity at the first cycle are plotted against the

number of cycles.

The results of other cycling load tests on piles are published in
Holmquist and Matlock (1976) and Sangray (1977).

5.9.5 Lloading Rate Effects

The rate at which axial or laterallloads are applied to a pile affect the

Toad deflection characteristics of the soil-pile system. The resistance
and stiffness of the soil increases for higher rates of loading and vice

versa for lower rates.

The review of literature on the soil strain rate effects suggests that
the best method available is to use a loading rate factor R, which
scales the ultimate strength and stiffness of soil load-deflection

curves.

The loading factor Bz is defined as the ratio of dynamic resistance

(Pa), to static resistance (Ps) and is expressed in the following form:

P, t

in which

the static or standard rate of loading.
the actual (dynamic) rate of loading.

numerical constants.




Based on the results of several investigators, numerical values for the

constant F, have been found to range from 0.01 to 0.03 for sands, 0.02
to 0.07 for silts, 0.02 to 0.12 for clays, and 00 to 0.03 for calcareous
soils. A value of 1.0 for F, is typically used.

Figure 5.9-10 shows lateral Toad test results on piles in cohesive soils
compiled by Bea et al (1980). Soils with higher OCR values tend to have
greater values of B,. Several tests showed a value of F2 ranging from
0.02 to 0.06 at OCR = 1 to 0.04 to 0.24 at OCR = 4.

In the "static" soil tests, about 10 to 100 per cent of ultimate load
capacity is applied per hour. This gives a reference value of Ber=1.0.
For coastal environments dominated by wave loading, 100 to 1000 cycles of
Toad could be applied per hour. This gives us a corresponding ordinate
of 104 to 105 and a Bz about 1.2 to 1.7. Note that for low "creep"
Toading rates (less than the static reference rate), (3, is smaller than
1.0.

Values for R, corresponding to axial loading conditions were also

summarized by Bea, et. al. (1980), and are shown in Figure 5.9-11.
Similar B, factors to lateral load tests were found for axial Toads,

however tests for creep type loadings were not reported.

Very little pub]ished data is available regarding the effect of Toading
rate on strength or stiffness of cohesionless soils. In fact, some
investigators have suggested that the strength of cohesionless soils is

largely unaffected by loading rate.
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5.9.6 Radiation Damping

Energy is dissipated in pile foundations subjected to cyclic loads
through two sources: the hysteretic damping due to inelastic behavior of
soils and the radiation damping due to elastic wave propagation in the
soil away from the pile. Incorporating this energy loss is important to
accurately determine the response of a pile system. The hysteretic soil
behavior and the associated loss of energy is illustrated in Section
5.9.3.

The approach used in PSAS to approximate the effects of radiation damping
was formulated by 0’Rourke and Dobry (1979). In this approach, the

coefficient of radiation damping, Ch, per unit length is given by
Ch = 2d Ps (Us+v)

where

d = the pile diameter.
p, = the soil mass density.
Us = the shear wave velocity.
U = a velocity satisfying v, <v<u_ where Ve is the

compression wave velocity in the soil.

The dashpot coefficient used in PSAS is based on a concept which is valid
for a one-dimensional wave propagation. A dashpot with a damping

coefficient C = p AV, will fully absorb the energy of a wave traveling
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with velocity 1/, along a bar with cross-sectional area 4 and mass
density p,. 0’Rourke and Dobry have shown that the radiation damping

can be reasonably approximated by the above formulation.

The use of the lower bound shear wave velocity for © in the expression
of radiation damping is a conservative assumption and simplifies the

expression for the radiation damping coefficient to the following:

Cn = 4dp,v,.

-The shear wave velocity v, is given by:

o |o

where G, 1is the shear modulus of the soil.

Shear Modulus

The shear modulus of a soil is a function of the level of strain, so in
determining a reasonable value, the average level of strain in the soil

element during the analysis should be estimated.

The shear modulus can be evaluated either from field measurements or from
Taboratory experiments. The advantage of field measurements is that the
s0il shear modulus is evaluated in the undisturbed state which is ideal
for the purpose of estimating the radiation damping. On the other hand,

conducting laboratory experimeﬁts allows for the variation in confining
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pressure and strain Tevel. Field methods for the evaluation of shear
modulus are classified into surface techniques and bore hole techniques.

These methods depend on the evaluation of the shear wave velocity, V

S

The different field and laboratory methods for the evaluation of soil

shear wave velocity are discussed in Auld (1977) and Richart and Woods
(1970).

Interaction Between Radiation Damping and Gapping

The coefficient of radiation damping in the lateral and axial directions

is set to zero for a full gap. As the gap closes, the value of the

coefficient is set at half of its original value. A partial gap does not

affect the initially specified coefficient value, however.




5.10 Cable-Spring Element

This element models the nonlinear restoring force of a cable system. The

force is defined at the cable attachment point.
5.10.1 Applications

This element can be used to replace a system of cable-anchor-support
elements, once the force-displacement characteristics at the cable
attachment point are known. Thus all of the cable, anchor, and support
elements can be replaced with a single element, greatly simplifying the

computer model.

5.10.2 Element Features

The element has the following features:
Arbitrary orientation in 3-D space.

The multi-Tinear force-displacement curve may be up to 19

segments.
Vertical and horizontal preloads may be specified.
5.10.3 Element Properties

Typical force-deformation curves for a cable-spring element are as shown
in Figure 5.10-1.

Each curve is defined by a force-deformation pair (e.g., horizontal

projection and corresponding force). Curves must be defined in




increasing order of horizontal projections. For each cable element, the
program calculates preloads in the element corresponding to its initial

horizontal projection.

Each cable-spring element is defined by three nodes as shown in Figure
5.10-2. The element end I is connected to the structure, and end J is
the anchor node. A third node K is desigﬁated to define the plane of the
element. The initial horizontal projection of the element is the
distance IJ in a horizontal plane normal to the plane of the element,
i.e., plane IJK. The subsequent horizontal projections are also defined
with respect to the initial horizontal plane. Therefore, it is important
to specify the node J correctly at a distance of initial horizontal
projection. Node K can be any node used to define the cable element

cable.
5.10.4 Element Stiffness

The element stiffness is formulated in the local coordinate system and is
transformed to the global coordinate system. The stiffness is obtained

from the force-displacement relationship in Figure 5.10-1.
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5.11 Shear Transfer Element (SHER)

The shear transfer element is a two-node element simulating the effect of
the shim connection between the pile and the tower leg. The pile
direction node defines the direction of zero stiffness. The plane normal
to the pile direction offers high rigidity, forcing the pile and casing
nodes to move together in the plane but slip along the pile direction.

(See Figure 5.11-1). The element has three translational degrees of

freedom associated with each of its two nodes.

From the pile direction vector, two orthogonal unit vectors a; and az are
formed. Truss bars with high stiffness (K = 1 x 1010) are placed along
these two directions to give the high in-plane stiffness. The global

element stiffness is found by adding the stiffness of the two bars, after
transforming them to global directions.

a a
[a] - aT] K[ : } and [al - al] K[ 2]
-a, —Qa,

The output consists of resultant shear transferred, relative total

deformation between the pile and casing node, and the direction cosines
of the resultant shear.

5-86



‘

Pile Direction Node

Leg

Casing

Rigid Truss

Pile

FIG. 5.11-1 SHEAR TRANSFER ELEMENT

OV ANTEX ~STARNFGCS=-11-1




5.12 Inelastic Buckling Beam-Column Element

This element is intended primarily to model inelastic pre-buckling and
post-buckling behavior in tubular beams and columns. The element is
3-dimensional and is able to take into account the effects of section

damage, joint cans, joint flexibility, and eccentric end connections.

Unlike a typical beam element, this element is multi-segmented and is
composed of other beam elements. The total element constitutes a
structural system and is called a "super-element"; the basic elements
which compose it are hereafter called "sub-elements." Action-deformation
response of the element will be obtained by performing a finite element

analysis on the super-element system.

The large-displacement, distributed plasticity beam-column element as

described in Section 5.13 is chosen as the sub-element of this e1emént.

This type of sub-element enables the super-element to exhibit inelastic

buckling behavior.

5.12.1 Element Capabilities

The element has the following capabilities:
The element is multi-segmented and can be straight or curved in
space. A curved member, often used in modeling
out-of-straightness effects, is specified in the shape of a

half-cycle sine curve.

Element deformation can be large for every step as long as the

element behaves stably.




3. A1l element input properties are automatically generated from

basic, user-supplied data.

4. The nonlinear force-displacement relationship of the tubular
element is constructed based on the behavior of

elastic-perfectly plastic material.

5. Element load is applied along the length of the element; its

effect on instantaneous buckling load can be studied.

6. Damaged sections with holes and/or dents can be represented

along the length of the element.

7. Joint cans, bi-linear flexible joints, and eccentric end

connections can be specified near the element ends.

8. Displacement and force results along the length of the element,
in addition to element end displacements and forces, can be

displayed.

The various super-elements that may be generated are shown in Figure
5.12-1.

5.12.2 Element Axes

The local coordinate system x, y and z of the super-element is defined

by three nodes i, j, and k, as shown in Figure 5.12-2. Nodes i and j
define the local x axis. The local y axis is normal to the local x axis
and resides in the plane containing the k node and the local x axis. The
local z axis is defined orthogonal to the local x and y axes, using the

right hand rule.
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The local coordinate system x’, y’ and z’ of the sub-elements is defined
by i’, j’ and k’ nodes in the way same as to define the super-element
axes. Each sub-element has its own i’, j’ and k’ nodes. Node i’ is
located on the sub-element end, close to the i node; node j’ is on the

other end. Node k’ is in the position same as the k node.

In Figure 5.12-2, capital X, Y, and Z are for the global coordinate

system.
5.12.3 Element Degrees of Freedom

The element has two external nodes and several internal nodes, as shown
in Figure 5.12-2. The external nodes connect to the complete structure
and have six degrees of freedom each; namely, X, Y, Z global translation
and X, Y, Z global rotation. The element nodal displacements in the
global coordinates are written as in vector q = [q, G5, ..., q;5], and
are related to the element end deformations in vector u = [uy, u,,...,
u,,] by a direction transformation matrix. The nodal displacements and
end deformations are shown in Figure 5.12-3. The local element forces
written as in vector p = [p,, P,, ..., Py,] are defined in a way similar
to the end deformations, i.e., the subscript numbers in the vector "p"
correspond to those of the vector "u", and the positive forces coincide

with the deformation directions.

The internal nodes (sub-nodes) are needed for constructing the
sub-elements. Each sub-element connecting two sub-nodes has twelve
degrees of freedom. The nodal displacements, q’, the end deformations,
u’, and the end forces, p’, of each sub-element are defined similarly to
the super-element. Thus, by adding a prime symbol to every designated

letter, the sub-element system can be indicated as well (Figure 5.12-3).
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Clearly, for a super-element system with "n" sub-elements, "n+1"

sub-nodes are needed and "6n+6" degrees of freedom are generated.
5.12.4 Section Properties

The basic data required to define the material and section properties

of the element are the diameter, D, the thickness, t, Young’s modulus,

E, and the yield stress, o, as shown in Figure 5.12-4. Based on these
data and assuming elastic-perfectly plastic material, four basic
nonlinear action-deformation pairs, i.e., M - ¥, M, - ¥,, M, - ¥,, and
F-e, as defined in Section 5.13.5, can be obtained. Because the input
parameters required by the distributed plasticity beam-column element are

forces and stiffnesses, they are constructed instead.
Bending Properties

The bending capacities which must be constructed are M,,, M,, and M;. M,
is the first yield bending moment capacity, when the section just starts
to yield; M,; is the full cépacity as when the full section reaches the
yield stress; and M,, is the capacity at an intermediate stage as when
the maximum strain of the section gets to two times the yield strain.
These bending capacities, as illustrated in Figure 5.12-5(a), are

expressed as

_ 2T

Mo = 0y
= 3B (D e i d
-My2 oy(0.147D d(Z-t) ) if t24

= 3_{_D \}cos3B _2t\(n_sin4B : d
ay(o.147D (32 (2528 +cos () 41 d)(B sinab ))) if £

5-90




and

where A and I are the section area and the moment of inertia,

respectively, and

B = sin™? /1
, At

The stiffnesses which must be constructed are K,M, KMyZ’ KMy3 and KMW
Kuyr represents the elastic stiffness while Ky, Ky; and Ky ,,

respectively, are the softening stiffnesses after M My2 and My3 are

y1?
reached. These four stiffnesses are expressed as

Khn = ET
_ My My,
zqmq = ———iq;___ ET
1
K, = ELMR ETI
My 20M,,

and

K, = 0.05K,
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Note that K, ; is calculated by assuming that the full capacity of the
section is reached, when the maximum strain get to 22 times the yield
strain, and Kuys is arbitrarily chosen to represent a very small residual

stiffness.

The bending action-deformation relationships for the local y and z axes
are the same for a tubular section. The above relationship, therefore,
can be used to define the bending relationship of the local z axes as

well.

Torsional Properties

The torsional capacities which must be constructed are M,,, M,, and M.
The first and third torsional capacities, M,, and M, are defined in a
way similar to the bending capacities (see Figure 5.12-5(b)) and M,, is
assigned as the average of M, and M,;. These torsional capacities, thus,

can be expressed as

2dJ

Ma =%
My, +M,,

M, = >

and

_ . 2n[D®_(D_,\3
o = 0,25 -(2- )
where J is the polar moment of inertia.
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Subject to the constraints of the deformation values at changes in
. stiffness to have the same ratios for all action-deformation

relationships (see Section 5.13.5), the four torsional stiffnesses are

KMn = GJ

K., = My, =My, My, %, K,
M,
“ My,-M,, My, KM,, x

and
K, =0.05K,
where
. R = KMy, My,~My, + My-My,
My, Kum KM,,,

Note that K,,, is arbitrarily chosen to represent a very small residual

stiffness.

Axial Properties

The axial capacities which must be constructed are F,, F, and F;. When
elastic-perfectly plastic material is assumed, these three forces should
be all the same. However, because the input of the distributed
plasticity beam-column element requires the magnitudes of F,, F, and F; in

an increasing order, these axial capacities are assumed to be
F, = 0,4
and
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1.01F,

F, =1.02F

The derivation of the axial stiffnesses, K., K;,, K and K;,, is also
subject to the constraints as stated above. Thus, these four stiffnesses

have the following form:

Ky = EA

1

Fl Myl KMYZ K,
M, F K, 5

b1

K, = 2=
Fz - My _
2

- (Fy-Fy) Kp Kp,
B Ky (F,-F,) -RF, K,

Ky = 0.05Kg

Note that the above force capacities and stiffnesses do not take account
of the effects of ovalization and local buckling. As a result, they

could be unconservative, particularly for a thin wall tube.

5.12.5 Element Stiffness

The process to form the super-element stiffness begins at a sub-element

Tevel. First, the 12 x 12 global stiffness matrix of each sub-element is

computed as described in Section 5.13.6. Second, all sub-element

stiffness matrices are added together to create a total stiffness matrix,
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which has "6n+6" degrees of freedom for an "n" sub-elements system.
Finally, static condensation is performed to obtain a 12 x 12 element
stiffness matrix, retaining the degrees of freedom q, through q,,. This
final element stiffness matrix can then be incorporated into the total

structural stiffness matrix.

5.12.6 State Determination

One of the major steps in the general nonlinear solution procedure for

structural analysis is the state determination of element response (see

Fﬁgure 5.12-6). The state determination for a beam-column element is

mainly to find element end forces response and then to determine the
force equilibrium status, provided that the element displacements

increment and the element state at the previous state are known.

For a typical beam-column element, the relationship of the force
displacements is explicitly known or assumed, though it may not be
simple. For the super-element, which is a structure system with

many sub-elements, the relationship becomes more complicated and, in most
cases, cannot be directly formulated and explicitly stated. This is
particularly true when nonlinear behavior is also involved. However,
because each sub-element is clearly defined, the response of the
super-element can be determined by performing the finite element analysis

on the super-element system.

An analysis solver to perform nonlinear finite element analysis is thus
created for the super-element. The solver, by itself, is able to perform
the solution procedure as illustrated in Figure 5.12-6; and the role of
the solver, in conjunction with the global SEASTAR solver, is also
illustrated in Figure 5.12-7. This solver, specifically tailored to

solve for the buckling of the nonlinear beams, uses either an adaptive
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load stepping or a displacement control scheme.

The displacement control scheme is applied when the given incremental

displacements are not all zero. In this case, the end displacements are
imposed, either in one or several sub-steps, and the corresponding

response forces are computed. If the end displacements are all zero and
the element load occurs, the load stepping control is used to evaluate

the response.
5.12.7 Initial Out-of-Straightness

To consider the initial out-of-straightness effect, the element is
modeled as piece-wise linear, by connecting the points on the half cycle
of a sine curve. The curve is controlled by two parameters, DELT and
ANGL, as shown in Figure 5.12-8. The amplitude control parameter, DELT,
represents the ratio of the maximum deflection at midspan to the initial
element length, and the position control parameter, ANGL, defines the
angle, measured from the local x-y plane to the plane containing the

curve element according to the Tocal x axis using the right hand rule.

The initial shape of the element may also be used to take account of the

effects of other imperfects of the element, such as residual stress.
5.12.8 Damaged Sections

The damaged sections can be any place along the length of the element,
and are defined by the damage length, the damage width, the damage depth,
the damage distance, and the damage angle, as shown in Figure 5.12-9.
The distance is measured from the center of the damage to the i node, and
the damage ang]e is from the local y axis to the damage center according

to the right hand rule. Up to 5 damaged sections can be specified for
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each element. Damage may be a hole or a dent. Analytically, each
damaged section is represented by a single sub-element. Four sets of
action-deformation relationships for two bending, torsional, and axial
properties, respectively, should be constructed for each sub-element to

represent the damaged section.

To construct the action-deformation relationships, a simplified reduction
factor method is used. This method replaces the dented (or holed)
portion of the section by an equivalent eccentrically placed circular
tube and reduces the capacity and stiffness of the equivalent tube from a
virgin section according to an evaluated factor. The factor differs for:
the damage of a hole or dent type and is considered separately in the

following sections:

Hole

A hole in a tubular section is assumed to have a rectangular shape with
the damage width and the damage length, as shown Figures 5.12-9 and
5.12-10(a). It is reasonable to assume the reduction factor, hp, of the
axial capacity is the ratio between the damaged and virgin section areas,
A’ and A:

n-o
T

A/
p="‘21'

where @ = sin™' (1 - W/D). W, is the damage width.

The reduction factor, h , of the bending capacity is determined using the

following equation:

- @\ _ sin(«)
h, cos(z) —




For simplicity, the reduction factor of the torsional capacity is assumed

to be "h " as well.

By assuming a thin wall tubular section, the eccentricity or the shift of
the gravity center of the section (see Figure 5.12-10(a)), due to a hole
is determined as

Dsin (a)

€= 2(n-o)

Dent

For the damage of dent type, the effect of the occurrence of the
plastification in the dented region, as shown in Figure 5.12-10(b),
should be incorporated into the reduction factor. The plastification

stress is

ol

2
(\J 1.77882+L- - 1.33348
D2

where & = D,/D. D, is the damage depth.

Thus, by including the plastification effect, the axial force and bending

moment capacities, Py, and M, respectively, become

Py =h,Fy;+0,A, < F,
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and

D

where h, and h, are the reduction factors for the damaged section of a
hole type, Ay =t * D * sin(e) is the approximate area of the dented
region, and F; and M,; are the maximum axial force and bending moment
capacities for a corresponding virgin section. Hence, the reduction

factors of the dented section become

p
h, = =2
F3

and
Md
h, = 7

¥Ya

For simplicity, the eccentricity due to a dent (see Figure 5.12-10(b)) is

assumed to be the same as that of a hole-type damage.

Note that only the local damage to the section is formulated here. The
overall deflection due to the damage is not considered. To take this

effect into account, the initial out-of-straightness option can be used.

A comparison of the buckling load histories between the laboratory test
data of a dented brace and the SEASTAR result of the super-element is
shown in Figure 5.12-11. The comparison indicates that the maximum
cépacity of the damaged brace can be predicted fairly well, while the
post-buckling strain of the super-element behaves stiffer than a real

damaged brace. This is caused by the fact that dent growth is not
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considered when the super-element reaches beyond the post-buckling part

of its load history.
5.12.9 Joint Can

Joint cans, stiffened sections at the proximity regions to the element
ends as shown in Figure 5.12-12, can be specified. Similar to the main
span, the joint can is also assumed to have a tubular cross-section and
is defined by its own diameter, thickness, Young’s modulus and yield
stress. Analytically, each joint can is represented by a single
sub-element. Thus, the input properties of the sub-element to represent

the joint can be determined in a way similar to those of the main span.

5.12.10 Flexible Joint

Bi-linear flexible joints can exist at both ends of the element. The
stiffness and capacity of the joint are defined through three
action-deformation relationships for axial force and two bending moments,
respectively. The input data needed for each relationship include the

elastic stiffness, K, the yield force, Fy, and the stiffness after

e?
yield, K,» as shown in Figure 5.12-13(a). The axial forces and the
bending moments are assumed to be uncoupled while the two moments are

coupled through an elliptical interaction surface.

In the analytical model, each flexible joint is represented by a single
sub-element of a relatively small length (about one hundredth of the
total length of the super-element), as shown in Figure 5.12-13(b). The
input properties of the sub-element to represent the flexible joint are
calculated from the basic, user-provided data. Because the flexible

joint often does not consider a torsional failure, the torsional effect

5-100




is ignored by assigning large torsional capacity and stiffnesses (20

times bending capacity) to the sub-element.

Interaction surface type 4, described in Section 5.13.7 and shown in
Figure 5.13-4, is chosen to model the force interaction of the joint.
This surface, with very large control constants, a, and a,, enables the
axial force and bending moments almost uncoupled. For example, when
a,=5.0 and a,=10.0 are used, the occurrence of a bending moment with a
half magnitude of the yield capacity only reduces the axial force to
reach the yield surface by 0.01 percent, or vice versa. This surface
assumes two bending moments are coupled through an elliptical interaction

surface.

To define a flexible joint, which is not right at the location of the end
node (e.g., which may be located at the face of the members to which this

element connects), the end eccentricity option can be combined.
5.12.11 End Eccentricity

A flexible joint is often assumed at near the faces of the large stiffer
member, which the super-element connects to, rather than at the
theoretical centerlines of the member. This effect can be approximated
by postulating rigid, infinitely strong connecting links between the

nodes and the element ends, as shown in Figure 5.12-14.
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5.13 Distributed Plasticity Beam-Column Element

This element is intended primarily to model inelastic effects in beams
and columns. The element takes account of moment-force interaction for

columns and of bending moment interaction for biaxial bending.

Nonlinear action-deformation (stiffness) properties in axial, torsional,
and two bending directions can be separately defined. The interaction of

action forces can be described.

The effects of eccentric end connections and varying cross section along
the element length can be considered if desired. Initial force of the

element can be also assigned.

Response of the element is monitored at two cross sections, located at
two Gauss points and is integrated over the element with use of shape
functions. From testing, it shows that this element, in computation
aspects, is more stable than a lumped type element described in
Section 5.4.

5.13.1 Basic Assumptions
The basic assumptions of the e]ément are stated as follows:

1. The element is straight and can be arbitrarily oriented in
space.

2. Element deformation should be small for each step.

3. Inelastic behavior is defined using multi-linear stress
resultant-strain resultant relationships for axial, torsional,

and two bending properties, separately.
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Bending moments, torque and axial force are interacted by means
of yield interaction surfaces.

Kinematic strain hardening is assumed for cyclic loading. The
kinematic hardening rule corresponds to translation of the yield
surface without change of size or shape.

Cross section plasticity is monitored at two cross sections in
the element and is assumed to be distributed over the element
length.

If considered, large displacement effects are based on an
engineering theory (i.e. not a consistent continuum mechanics

approach).

5.13.2 Element Axes

Element properties and results are specified in the local coordinate
system x, y, and z, which is defined by three nodes i, j, and k and as
shown in Figure 5.13-1. Nodes i and j define the local x axis. The
local y axis is normal to the local x axis and resides in the plane
containing the k node and local x axis. The local z axis is defined
orthogonal to the local x and y axes, using the right hand rule. 1In

Figure 5.13-1, capital X, Y, and Z are for the global coordinate system.
5.13.3 Degrees of Freedom
The element has two external nodes and two internal Gauss stations, as

shown in Figure 5.13-2(a). The external nodes connect to the complete

structure and have six degrees of freedom, each, namely X, Y, Z global

translations and X, Y, Z global rotations. The element nodal

displacements in the global coordinates are written as

q=(q G ---» Qp5)
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After deletion of the six rigid body modes for the complete element
and transformation to the local element coordinates, the six deformation
degrees of freedom shown in Figure 5.13-2(b) remain.

The transformation from global displacements to element deformations is

V=uagq

in which

= (Vis Vor weny V) = element deformations (Figure
5.13-2(b)).

= (Qys Qps «.vy Qpp) = element nodal displacement
(Figure 5.13-2(a)).

and the transformation matrix "«" is well known.

5.13.4 Shape Functions

Response of the element is monitored at two cross sections or "slices",
located at Gauss stations. Each slice has six deformations, namely,
axial deformation, rotational deformations about each of the local x, y,
z axes, and shear deformations along the y and z axes. The deformations
are arranged in the vector w,

T
W = (Wy, Wy <.y W)

The Deformation vector "w" at any location can be related to the end
deformation vector "v" through shape functions, which are obtained based
on the assumption of a uniform elastic beam. The shape functions are

assumed to be applicable, in both the elastic and yield states.
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With use of the shape functions, the element performance can be
determined by Gauss integration (i.e. conventional finite element

techniques).
5.13.5 Section Properties

The relationships between actions (stress resultants) and deformations
(strain resultants) must be provided for the two cross sections at the
Gauss points. Relationships are shown in Figure 5.13-3 for each of four
action-deformation pairs, namely (1) bending moment in the local y axis,
M,, and corresponding curvature, ¥,; (2) bending moment in the Tocal z
axis, M,, and corresponding curvature, ¥,; (3) torque, M, and
corresponding rate of twist, ¢,; and (4) axial force, F, and
corresponding strain, €. Each relationship may have up to four linear
segments, as shown. The relationships may be of different shape for each
stress resultant. It is necessary, however, for the deformation values

at changes in stiffness to have the same ratios for all relations.
5.13.6 Element.Stiffness

To compute element stiffness at any state, a 4 x 4 elastic slice
flexibility matrix is first formed, in terms of the section actions My,
M,, M,, and F at each Gauss station. This matrix is then modified by
adding the plastic flexibilities on each active yield surface to give a 4
X 4 elasto-plastic slice flexibility. This flexibility is inverted to
obtain a 4 x 4 slice stiffness, which is then expanded to a 6 x 6 slice
stiffness in terms of the degrees of freedom w, through w, by adding
stiffness to account for shear deformations along the y and z axes. The
stiffness matrix in terms of the degrees of freedom v, through v, is then
determined by Gauss integration using the conventional finite element

technique. Finally, the stiffness is transformed into the 12 x 12 global
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element stiffness matrix and is able to be incorporated into the total

structural stiffness matrix.
5.13.7 Modeling of Inelastic Behavior
First Interaction Surfaces

The actions My, M,, M, and F interact with each other after the'magnitude

2
of the actions reaches a certain level. To model this effect, an
interaétion surface (yield surface) method is used. And, to allow for a
variety of applications, five different yield surfaceg_are available.

y» M, M, and F), and

hence cannot be shown easily using diagrams. The surfaces differ,

These surfaces are all four-dimensional (i.e., M 2
however, mainly in the way in which the axial force interacts with the
three moments. Hence, the differences can be illustrated using the three
‘dimension diagrams as Figure 5.13-4 where the Mi and Mj axes indicate any
two of the moments, and the F axis indicates axial force. The equations

defining the interaction surfaces are shown in the figures too.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2,
3 and 4 allow more realistic modeling of moment-force interaction for
cases in which axial force effects are substantial. Surface 5 is

included for greater generality in special cases.

Interaction Surfaces for Subsequent Yield

For modeling a slice with nonlinear material properties, it is assumed

that the behavior is elastic-plastic-strain-hardening, as shown in Figure
5.13-5. First yield is governed by the initial yield surface; for each
change of stiffness, there is a corresponding "subsequent" yield surface.

These surfaces are assumed to have the same basic form as the surface of
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first yield. However, because the action-deformation relationships may

be different shape for each action, the surfaces for the first and
subsequent yield will generally not have identical actual shapes. An

example is 2-D stress resultant space .is shown in Figure 5.13-5.
Elastic and Plastic Stiffnesses

The initial slopes, K,, for the action-deformation relationships are
defined as the elastic stiffnesses and are expressed as:

Ky = Kse = diag (EI, EI, GJ EA)

z
where E is Young’s modulus, G is shear modulus, I and I, flexural
inertias in local x and y axes, respectively, J is torsional inertia, and
A is section area. The slopes of subsequent segments of the action-
deformation relationships are denoted as Ky, Ky, and K, and are defined as

the post-yield stiffnesses.

The assumed multi-linear action-deformation relationship for each force
component can be modeled as a set of springs, consisting of an elastic
spring and a series of rigid plastic springs, as shown in Figure 5.13-6.
The plastic stiffnesses, Kp, of the rigid-plastic springs can be related
to the post-yield stiffness values, K. The relationship between plastic

stiffness, K ; and post-yield stiffnesses, K; and K,,, can be obtained as:

pi

K.K.
Ki= J4viel
P K;-K;.,




For each rigid plastic spring, a plastic stiffness matrix is defined as:

Ksp = diag(KMy, KM:' KMXI KF)

,» KM, and KF are the plastic stiffnesses of the individual

where KMy, KM

action-deformation relationships, obtained from the equation above.

Hardening Behavior

After first yield, the yield surfaces are assumed to translate in stress
resultant space, obeying a kinematic hardening rule (translation without
change of shape or size). An extension of the Mroz theory of material
plasticity is used to define the hardening behavior. Because the
interaction surfaces are generally not exactly similar, overlapping of
surfaces can occur. As a result, the hardening behavior is more complex
than in the basic Mroz theory. For example, in Figure 5.13-5(b), the
current stress resultant point, A, Ties on yield surfaces YS,, YS,, and
YS;. Hence, all three plastic springs have yielded, and the direction of

plastic flow is a combination of the normal vectors n,, n,, and ns.

Plastic Flow

Interaction among the stress resultants is considered as shown
diagrammatically in Figure 5.13-5. Yield begins when the first yield
surface is reached. The surface then translates in stress resultant
space, the motion being governed by the plastic flow of this first yield
surface. Translation of the first surface continues until the second
surface is reached. Both surfaces then translate together, governed by a
combination of plastic flow on both of the surfaces. For any yield
surface, plastic flow is assumed to take place normal to that surface.

If two or more surfaces are moving together, the total plastic
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deformation is equal to the sum of the individual plastic deformations
for each yield surface, directed along the réspective normal directions
at the action point. After some arbitrary amount of plastic deformation,

the situation might be as illustrated in Figure 5.13-5(b).

On unloading, the elastic stiffness values, K,, govern until the yield
surface of the first subhinge is again reached (Figure 5.13-5(b)). The

surface then translates as before.

5.13.8 End Eccentricity

Plastic hinges in frames and coupled frame-shear wall structures will
form near the faces of the joints rather than at the theoretical joint
centerlines. This effect can be approximated by postulating rigid,
infinitely strong connecting links between the nodes and the element

ends, as shown in Figure 5.13-7.

5.13.9 Initial Forces

For structures in which static analyses are carried out separately (i.e.

outside the SEASTAR program), initial member forces may be specified.

The sign convention for these forces is as shown in Figure 5.13-8. These
forces are not converted to loads on the nodes of the structure, but are
simply used to initialize the element end actions. For this reason,
initial forces need not constitute a set of actions in equilibrium. The
only effects they have on the behavior of the system are (a) to influence

the onset of plasticity and (b) to affect the geometric stiffnesses.
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6.0 ELEMENT LOADING
6.1 Introduction

The Toads generated at the element level by the program are categorized
as element loadings. These include dead Toad, buoyancy, and hydrodynamic
Toads. In addition, the generation of the riser mass and hydrodynamic
added mass is discussed in this section. The treatment of hydrostatic

pressure, Poisson’s effect, at the element level is described. In

addition, the use of the concept of "effective axial forces" in the

computation of element stiffness is outlined. Generation of catenary

shapes and initial forces at the element level is also included.




6.2 Dead Load

The dead load is calculated from the weight density of the member in air.
This dead load does not include the weight of the internal fluid in the
member. The effects of buoyancy and internal fluid are treated

separately.

The element dead load is computed as concentrated nodal loads. Effects
of moments caused by self-weight are considered. The element dead loads
are applied as a static nodal force pattern. The original dead load

distribution remains unchanged during the structure motion.
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6.3 Element Mass

The mass is calculated using the mass density of the member material.

The tributary element mas;_for each node is calculated by multiplying the
member tributary volume (member cross-sectional area multiplied by the
tributary length) by the mass density. The tributary element mass for
each node is then assigned to the translational degrees of freedom. The
rotational inertia associated with the rotational degrees of freedom is
neglected. The mass matrix is thus a diagonal one with the rotational
mass terms neglected. In case the mass density of the member material is
not specified, the mass density defaults to the weight density divided by

the gravity acceleration.

If the member contains any internal fluid, its mass could be included by

turning on a flag.




6.4 Hydrodynamic Added Mass

At each node, the added mass is calculated for each global direction, as

dZ Ku 0w 5 (1 = lcos 31) (6.4-1)

S

where

¢ = the angle between member axis and each global axis.
KM = added mass coefficient.
dy = effective water diameter (input by user).

The effective water diameter is the diameter used to calculate the

hydrodynamic loads on the members.

The added mass for members not aligned with a global axis thus has a
spurious component in the axial directions of the members. For partially
submerged members, only the portion below mean water level contributes to

the added mass.
“/T

change with changing submergence from waves or structure motion.

he added masses are simply added to the other nodal masses and do not

During dynamic analyses with waves or currents, the user has the option
to include the change in added mass as the amount of submergence changes.

This is achieved as follows:
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The initial nodal added mass term AM I' is kept permanently on the left

hand side of the equation of motion, to give numerical stability to the

problem.
(M« AM) r + CFP + KT = R

During dynamic analyses with waves or currents, the updated added mass

forces are applied as actual elements forces, AM”® F. To maintain the

original equation, the initial nodal added mass forces AM 7 must be

included as element forces also. Thus SEASTAR solves:

M+ AMYF + Cr + Kr = R -~ AM" i + AM ¢

— —

which is the same as the simpler version of the updated representation
M-+ AM)r + Cr + Kr + R

This is achieved by explicitly computing AM 7 using the initial nodal

mass AM and adding it as a nodal force. At the same time, the updated
added mass force AM” 7 is computed, as an element hydrodynamic force, at

force points.




6.5 Buoyancy

The buoyancy load is applied as a distributed Toad per unit length along
the member. The distributed load is always acting normal to the member.

This Toad is given by
(Yo Ay = v; A;) sing,
in which
Yo weight density of sea water.
Ay, member external cross-sectional area.
Y weight density of the internal fluid.

A; member internal cross-sectional area.

¢, the angle between the member axis and the vertical axis.

The member is assumed to remain straight between the end nodes.

Coordinates of the member are updated and the buoyancy loads are applied
at the element deformed configuration. The fixed end forces caused by

the application of the buoyancy load are computed.

A buoyancy force pattern is generated by the program in the member’s

initial configuration.

A surface-piercing member will experience a change in buoyancy if it
displaces vertically. SEASTAR models this change in buoyancy by adding a

spring to the submerged end of the member with a stiffness equal to the




buoyancy force per unit length of the element. This "buoyancy spring"
has one end attached to the submerged end of the member and the other end

is fixed.

When two members of equal diameters are connected to the same node and

are in line, the buoyancy forces at the connecting node are equal and

opposite and thus cancel out.




6.6 Hydrostatic Pressure

Hydrostatic pressures are applied at the end of all members along the
elements. The elements are assumed to remain straight between the end
nodes. As the member deforms, the direction of end pressures are updated
and are always acting along the element in a straight line between the

end nodes. The value of the end force at any node is given by:

Fus = P, A, - P, A, (6.6-1)
in which
Po = the external water pressure.
Pi = the internal water pressure.

For a continuous straight member, the end forces on adjacent elements
cancel out, as shown in Figure 6-1. The net end force acting on a

straight member acts at the exposed surface only.

For a continuous curved member in a horizontal plane, the end forces
produce a resultant which acts as a restoring force and causes the moment
to be zero everywhere along the element (Figure 6-2). The net effect is
a compressive stress in the curved member equal to the hydrostatic

pressure.

Figure 6-3 shows a member subjected to distributed buoyancy along the
member plus the end pressures. The resolution of these forces in the

vertical direction results in a net vertical force given by

(Yo Aw = v A) L (6.6-2)
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This term is simply (the total buoyancy force on the members minus the
weight of the inside fluid). The distributed buoyancy along the member

plus the end pressure give the correct distribution of buoyancy loads on

straight or curved members.

The end pressures are added to the distributed buoyancy along the member.




6.7 Hydrodynamic Forces with Waves or Currents
The equations of motion of the structure are expressed by below:

M+ AM) r + Cr + Kr = R

—_—w

where R~ is the wave load vector. A modified Morison O’Brien equation

which takes into account the tangential drag force is used to evaluate

the vector of wave loads and is given by:

R, = 1729, Cp A(u, = D)lu, = £l + p, Cy V 4,

w

* 5P, Cpsmd(u, -r)ly, -1l

1
2

structural mass matrix.

damping matrix.

stiffness matrix.

structural acceleration vector

structural velocity vector

structural displacement vector




AM = hydrodynamic added mass matrix.

R, = wave force vector.

Pw = fluid mass density.

Cp = hydrodynamic drag coefficient in the normal direction.
Cps = hydrodynamic drag coefficient in the longitudinal

tangential direction (parallel to the member axis).

Cum = hydrodynamic inertia coefficient.
Ky = hydrodynamic added mass coefficient.
d, = effective member diameter.
A = effective projected area.
VAR effective displaced volume.
u, = water particle velocity vector (wave and current).

water particle acceleration vector (wave and current).

Figure 6-4 shows how the wave force for an inclined tubular member is

calculated.
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integrating pressure distributions along the element. These forces are
actually computed as element resisting forces, rather than as nodal
applied forces. Hence, their contributions do not show up in the applied

load norm.

An option is available to suppress the generation of fixed end moments

for the beams. With this option only, the fixed end shears aré computed.




6.8 Poisson’s Effect

Poisson’s effect due to hydrostatic pressure may be significant with
increasing water depth. Forces caused in members due to Poisson’s effect

depend on the fixed end conditions and water pressure.

Figure 6-5 shows the steps involved in computing forces and displacement

caused by external and internal pressure on a section of a pipe with free
ends. In the first step, the pipe is assumed to be fixed, and fixed end

forces caused by Poisson’s effect are computed. Next, the fixed end

forces are reversed and applied as external loads. Finally, the forces

and displacements from steps 1) and 2) are added.

SEASTAR applies the Poisson forces as internal resisting loads at the

element level, and corrects for the fixed end forces.
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6.9 Effective Axial Forces

The axial force in a member determines the geometric stiffness of_the
member and hence its total stiffness. However, when a member is
submerged in a fluid with pressure p, the axial force due to the pressure
does not contribute to the geometry stiffness. This is most easily

explained by a simple example.

Consider first an initially straight beam acted on by an externally
applied axial force P. If a small deformation of the element is
considered, the "P- A effect of the external load is resisted by the
bending stiffness of the beam. At some value of P the beam is unable to

resist the resulting bending, and buckles.

Next we consider an initially straight beam under hydrostatic pressure p,

causing an axial force P. In a displaced position (Figure 6-6), a check .
of equilibrium at any section across the beam, AA, reveals that there is
no bending moment in the beam, and hence the beam is not being called
upon to resist the axial pressure force by bending. Thus, axial pressure

forces should not appear in geometric stiffness computations.

In SEASTAR, true axial forces are printed, but the effective axial force,
found by subtracting pressure forces, is used for the geometric

stiffness.
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| . 6.10 Catenary Generation

The coordinates of the catenary nodes are generated in SEASTAR using six

different options:
Tension at the top of the catenary (Tp).
Horizontal component of tension at the top (H).
Catenary length (L¢).

Angle with horizontal at lower end (9,).

Angle with horizontal at upper end (65).

6. Mooring length.

. Figure 6-7 shows the definition of these input quantities. The catenary

generation is based on the following fundamental equations of catenary:

H (x@)
— cosh | ==
w H
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These equations are solved numerically using the bisection method. The
SEASTAR catenary generator requires the user to distinguish the shape of
the catenary generated. This is required because with certain input
options, it is possible to get a double root, and by specifying the shape
the user helps the generator to converge to the desired root. For
example, for a tension Tg at the top of the catenary (Figure 6-8), two

solutions are possible.

The catenary generator always assumes that node A is lower than node B.

Reversal of the nodes will cause incorrect transformations from local

catenary coordinates to global coordinates.

For the sixth option the user specifies the mooring length which differs
from option 3. In option six the mooring line is composed of two
segments. The first segment is straight and lies on the ocean floor, the
second segment is catenary. The solution to this is obtained
iteratively. First, the coordinates of the touchdown point of the
mooring line is computed. The total length of both segments (the
straight Tine and the catenary) are checked against the length of the
mooring line. A new estimate of the Tength of the catenary part is
obtained and new coordinates of the touchdown point are estimated. This
process continues iteratively until the total length of both segments is
equal to the length of the mooring line. The geometry of the catenary

shape is evaluated next.




FIG. 5-8 TWO POSSIBLE SOLUTIONS OF A CATENARY
WITH SAME TENSION T, AT THE TOP




7.0 WAVE KINEMATICS

7.1 Available Wave Loading Options

Wave kinematics can be generated from current, Airy waves, Stokes V

waves, irregular seas, Stream Function waves or 2-D grid wave loader. A

combination of current plus any of the wave types can also be specified.

The following six sources of wave kinematics in SEASTAR are described.

Current

Airy waves

Stokes V waves
Irregular seas

Stream Function waves

2-D grid wave loader




7.2 Current

Current is defined by a series of velocity vectors at different
elevations, the velocity between two defined levels being calculated by

linear interpolation of two velocity vectors. Current may be combined

with regular waves (Airy, Stokes or Stream Function), irregular seas, or

2-D grid wave loader. The current velocity profiles may be time
dependent. The current profiles will be stretched to the free water

surface if waves and current are both considered.
The current has two effects.

Modifications of wave periods for Airy waves, Stokes waves and

regular or irregular waves.

Modification of kinematics by vector addition of wave and current

velocities for all types of wave loading specification.

The effect of a current on a wave is to carry it along with it, thereby
changing the period as observed at a stationary point. This is known as

the Doppler effect. This is described in detail in Section 7.3.2.




7.3 Airy Waves
An Airy wave is the linearized solution of the boundary value problem
Vi¢$ = 0

where ¢ is the flow potential function. The free surface boundary

condition is linearized by assuming the surface elevation n to be

small.

7.3.1 MWave Length

The wave length, A,, in still water is found from

2nD

gT?
A = =—— tanh
w on an

w

gravity acceleration

the water depth

the wave length

the wave period
7.3.2 Effect of Current on Wave Period

The effect of a current, with velocity component V. at the surface in the
direction of the wave, is to increase the speed of the wave crests.
Thus,




the period relative to a fixed observer.
the period relative to a moving current.

From this, equation 7.3-1 is modified to become

T:
A, = g
21 (l _

Equations 7.3-2 or 7.3-3 are solved iteratively.

The period of the wave relative to the current is

7.3.3 Free Surface Profile
The wave profile is given at a point (x, y) and time, t, by

Hu 2n
= -— CO0S
n >

xcosB + ysind ot X,
Ao T Ay

where

Hy = the wave height

(7.3-5)




DI
I

the angle between the wave direction and the x-axis

(Figure 7-1).

The distance at time zero from the wave crest to the

>
o
L}

origin, measured in the direction of wave motion.

7.3.4 Wave Particle Motion

The water particle velocity u and acceleration u at the point (x, y,

z) where z is measured upwards from MWL are given by

Uy G(z) cos® cos
u - Huon . on xcos® + ysin® ¢ X,
wy > T G(z) sin® cos . T
Uy, H(z) 1 sin
(7.3-6)
Uy G(z) cos® sin

: H, (2r)? o=
Uyy = > |7 G(z) sin® sin 2n -

xcos§+ysin§ t X,
Ay T Ny

wz H(=z) 1 -~cos
(7.3-7)

Here G(z) and H(z) are the vertical decay functions of horizontal and

vertical motion, given by
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cosh —

—3 (7.3-8)
sinh 2ip

G(2)

sinh
H(z)

——7!"’3 (7.3-9)
sinh —

where f is the distance from the mudline to the point (x, y, z), i.e.,
f = D+ z (7.3-10)
7.3.5 Stretching of Kinematics

Since the above equations strictly apply only to small values of H, an
assumption is required if Hy is not small and values of z > 0 are used.
Either these equations can be used directly, or the values that strictly
apply at the MWL (z = 0) can be assumed to apply at the surface (z = n).
Thus kinematics from the MWL are "stretched" up to the free surface at
the crest (and compressed to the free surface at the trough). See Figure
7-2. Mathematically this is accomplished by replacing the vertical
coordinate f by f’ given by:

(7.3-11)

This process is shown diagrammatically in Figure 7-2. It is generally

not recommended for regular waves.
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Another method which is available for stretching the wave kinematics is
called the delta stretching. However, the delta stretching does not give
good results and is thus not implemented in SEASTAR. The most commonly

used method for stretching is the Wheeler stretching.
7.3.6 Effect of Currents on Kinematics

A current modifies the observed period To to a period Ty that defines the
magnitude of the water particle motion (Section 7.3.2). However, the
observer still sees the original period of motion, so the horizontal

velocity is.

~

xcosb + ysind ¢  x,
—_—— — 7.3-12
( x. T, xw) ( )

AV

u =

wx

H, 2n -
> T G(z) cos6 cos 21 -

~
E

Other quantities follow similarly. To these velocities are added the

current velocity, vectorially.
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7.3.6 Effect of Currents on Kinematics

A current modifies the observed period Ty to a period T, that defines the
magnitude of the water particle motion (Section 7.3.2). However, the
observer still sees the original period of motion, so the horizontal

velocity is

H, _ 8 ind
we = 5 G(z) cos cos ZR(xcose * ysin® _

Xo
- —) (7.3-12)

t
Ay To A,

Other quantities follow similarly. To these velocities are added the

current velocity, vectorially.




7.4 Stokes 5th Order Wave

Stokes 5th order wave is an approximation method to solve the Laplace
equation VZ?¢ = o with nonlinear free surface boundary conditions. Five
terms of the trigonometric function are used in the approximation
procedure. SEASTAR uses the numerical solution method published by
Skjelbreia and Hendricksen (1960).

The solution matches boundary conditions along the free surface more
accurately, by assuming that the velocity potential ¢ is a function of
five harmonics. They all are assumed to propagate at the same speed.

The partial derivatives of ¢ with respect to position are the particle

velocities. The partial derivatives of velocity with respect to time are

the Tocal (unconvected) accelerations used in the program. (The "total"
acceleration includes changes in velocity due to translation, as well as

time change.)

Since the Stokes 5th order wave matches the nonlinear free surface
boundary condition reasonably, it is valid for large waves and the

Kinematics stretching is not applicable.
7.4.1 Effect of Current
Currents cause two effects:

Modification of the wave period, due to the wave being carried

along by the current.

Vector addition of water particle velocities from wave and

current.




Both effects were described in Section 7.3 and affect Stokes V wave

theory similarly. The wave length is a nonlinear function of wave height

so the wave Tength is solved by iterating on a set of nonlinear

equations, instead of the simple equation 7.3-3.




7.5 Irregular Sea

The analysis of irregular sea action on marine risers requires
information on statistical characteristics of irregular sea which are
described with a power spectrum. Various theoretical spectra of ocean
waves have been proposed by different investigators. SEASTAR uses two
forms of sea spectra: one is user defined and the other is the

Pierson-Moscowitz spectrum (1964).

For the user-specified sea spectrum, the user can define a series of
Tinear waves with varying wave heights, periods and directions, i.e.,
multidirectional spectrum. The ability to specify three-dimensional seas

is important since the along-wave forces (i.e., in the mean direction of

wave advance) cé]cu]ated using 3-D waves are less than those calculated

using unidirectional waves. Also using 3-D waves takes into account the
across-wave forces (i.e., perpendicular to the mean direction of wave

advance) which are not accounted for in the unidirectional waves.

For the generated sea spectrum, the Pierson-Moskowitz spectrum is used to
generate a series of unidirectional linear waves with varying wave
heights and periods. The range and interval of the frequency for
generating individual waves is defined by the user. The phase of the

individual linear waves is generated by a random number generator.

The irregular sea is obtained by superposition of all the generated

linear waves.




7.5.1 Pierson-Moscowitz Spectrum

The Pierson-Moscowitz spectrum is obtained by correlation of observed
data with an analytical model for a fully developed sea subjected to wind
speeds of 20 to 40 knots. The expression for wave height spectrum is

given by

in which

the angular frequency

acceleration due to gravity

a dimensionless constant (a = 8.1 x 107%)

a dimensionless constant (b = 0.74)

the mean wind velocity at a height of 64 feet above the sea

surface.

The wave amplitude for a frequency interval Aw is given by

a = 2 Sp(w) Aw

—~




7.5.2 Wave Number

Using the angular frequency w,(= 2n/T,) instead of the period, Ty,

and the wave number «x,(=2n/A,,) instead of wavelength A\ ,_,, the wave

number of the nth component is defined for any water depth D by

w2 = gx,tanh(x,D)

which is exactly equivalent to egn. 7.3-1 for Airy waves.
7.5.3 Free Surface

The free surface is given by adding contributions from all wave

components

n = Za,,cos{x,,(xcosé + ysin@) - w,t - €.} (7.5-4)

the amplitude of the nth wave component

the coordinates of a point

the angle between the x-axis and the direction of wave

propagation (Figure 7-1).

the time

the phase of the nth wave component




7.5.4 Wave Kinematics

Water particle motion is found by adding vectorially the kinematics due
to each wave component. Thus, the water particle velocity u and
acceleration u at (x, y, z) are given by the equivalent of equations

7.3-6 and 7.3-7, summed over all components.

G,.(z) cos@
> a, w, G,(z) sin® {x,(xcos® + ysinB) - w,t - €,)}

H,.(z)

{x, (xcos@ + ysinb) - w.t - €.}

Again, the vertical decay factors are given by

coshx, f

G =
n(2) sinhx,D




7.5.5 Stretching

The procedure of stretching the kinematics was introduced in Section
7.3.5. While not of much importance in regular waves, it is recommended

to be used in irregular waves for the following reason.

Consider two wave components as shown in Figure 7.3, one rather long and
one short. If no stretching is used (upper figures), the resulting
kinematics at the free surface is incorrectly dominated by the kinematics
from the small wave component. Stretching has the effect of transporting
the kinematics for the small wave up to the surface, where it "rides" on
the larger wave, contributing its kinematics in a more reasonable way

(lower figure).

As for regular linear waves, stretching requires replacing f, the

elevation of the point relative to the mudline, by f’ given by

D
Co= 7.5-13
R v ( )
Since m is already a function of all wave components, this couples the

kinematics of all wave components.
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7.5.6 Current Interaction

Since each wave is independent of the others, the current modifies the

wave length and observed frequency of each wave component, independently,

- exactly as described in Section 7.3.6 for Airy waves.

Resulting kinematics of wave components and current are added

vectorially.




7.6 Stream Function Waves

The Stream Function wave theory, as implied by the name, is based on a
Stream Function representation of the flow. For two-dimensional

irrotational motion, the Stream Function satisfies Laplace equation
Viy = 0

The Stream Function 1wy also satisfies the three boundary conditions;

1) no f]ow-through the seabed, 2) constant pressure at the water surface
(dynamic free surface boundary condition), and 3) no net change in the
mean sea level due to the presence of the wave. Details of the Stream

Function wave theory are given in Dean (1965-a).

The Stream Function is expressed as the series sum of waves that are
periodic in x. The wave is divided into several discrete points and the
dynamic free surface boundary condition is applied at each of these
points. The coefficients corresponding to the different components of
the series are obtained by minimizing the error resulting from the lack
of fit to the free surface boundary condition. An initial set of values
for these coefficients is first assumed and then these values are

improved through an iterative procedure.

The number of terms (order) necessary for an adequate representation of
the nonlinear wave is determined by the relative height parameter

H,/T? and the relative depth parameter D/T2. Figure 7-4, adopted
from Dean (1965-b), gives, for different values of the relative depth and

height parameters, the minimum order of the Stream Function needed such

7-16
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that the errors in the maximum velocities are less than 1 percént between
the given order and the next higher one. In SEASTAR, the default order

is 9.

As for Stokes wave, the Stream Function wave is valid for large wave

heights and the kinematics stretching need not be applied.

Current-wave interaction for the Stream Function wave is considered

simply by adding the current water particle velocities vectorially to

those of the wave. The effect of the current on the wave period (Doppler

effect) is not considered.




7.7 2-D Grid Wave Loader

In this option, the wave kinematics at grid points are generated first by
the program SEAGEN and written to a file that is read by SEASTAR. The
program SEAGEN calculates wave and current kinematics at points in a

rectangular grid as shown in Figure 7-5. Calculation of wave kinematics

in SEAGEN is carried out based on any of three options:

1. Direct input of wave heights, periods, and phases.
2. Time history of sea surface elevation.

3. Sea surface elevation power spectral density.

For all the options, the water particle kinematics are computed us1ng the

Airy wave theory and stretching is applied.

Current effects in SEAGEN are included by vectorially adding the current
water particle velocities to those of the waves. Modification of wave
period due to the presence of current (Doppler effect) is not considered
in SEAGEN.

If both current and the 2-D grid wave loader options are specified in
SEASTAR, the current kinematics are added vectorially to the grid

kinematics.




\/

FIG. 7-5 2-D GRID WAVE LOADER




8.0 VESSEL MOTION

SEASTAR vésse] motion is a procedure for defining displacement record

time histories for the heave, surge, sway, roll, pitch and yaw of a
vessel subjected to "irregular seas." The irregular sea definition is
described in detail in Chapter 7. The input or computed irregular seas

are used in computing the vessel motions.

For each of the six vessel motions, a response amplitude operator (RAO)
is defined by the user. The RAO defines the amplitude and phase with
which the vessel responds to a single linear wave of a particular
frequency. The RAQ’s are input for each vessel motion at discrete
frequencies for a particular incident angle between the vessel and wave
direction. The transfer function or the RAO’s are then linearly or

parabolically interpolated to the irregular sea wave frequencies.

The cross-coupling effect between various vessel motions is ignored since
RAO’s are specified independently. For example, cross-coupling between

surge and pitch or between roll and sway is ignored.

The vessel motion at various irregular sea frequencies is obtained by a

complex product of the RAO’s and wave amplitudes, i.e.,
Yi(w) = H(w) - X(w)
in which

X(w) the irregular sea amplitude for frequency w .

H(w) the interpolated RAO at frequency w, for the ith vessel
motion.




Yi(w) = the vessel motion for frequency w, for the ith vesse]

motion.

Y(w) is a complex number which defines the amplitude and phase of the

ith vessel motion at frequency w.

The time history of the six vessel motions is obtained by linear
superposition of individual frequencies. The six vessel motion histories
are next resolved in the global axis of the problem. The user has the
option of applying these vessel motions as imposed displacement records

to any of the structure nodes and degrees of freedom.

Simplified vessel motion can be generated by sinusoidal displacement time
histories.




- 8.1 Imposed Displacement Records

The equilibrium equations to be solved at frequent intervals during the

analysis are of the form:
(8-2)

For dynamic analysis, K* and AR* are effective matrices containing

inertia and damping terms.

If all terms in Apr are initially unknown, the equation solving
operation is straightforward. In some cases, however, certain terms in
Ar are specified as imposed displacements (e.g., vessel motions), and

can be accounted for during the equation solving. This is done by

skipping over the columns and rows of the corresponding equation during

the reduction of the stiffness matrix, K*, and subtracting from AR* the
inner product of the matrix containing the symmetric part of the skipped

columns or rows and the vector containing the imposed displacements. The
back-substitution to compute the displacements is then done also by

skipping over the equations corresponding to imposed displacements.
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