4

JOMAE, InReviac

BT

1 —

NUMERICAL MODELING OF RATE PROCESSES DURING ICE-STRUCTURE INTERACTION

S. Shyam Sunder, Associate Professor
M.S. Wu, Research Assistant
C.W. Chen, Research Assistant

Massachusetts Institute of Technology, Department of Civil Engineering, Room
1-274, Cambridge, MA 02139

ABSTRACT

The mechanics of the indentation of ice at low to moderate rates of loading
is studied using the finite element method. The material model used for the
simulation study consists of a multiaxial flow model and a smeared cracking model.
The flow model is developed in the formalism of irreversible thermodynamics and,
in parficular, includes transient creep as an internal rheological variable. A
multiaxial criterion is used in the smeared cracking model to predict tensile
failure. To solve the initial boundary-value problem, a two-level jiterative
algorithm is developed. This uses an incremental-iterative method to solve the
discretized finite element equations, and a Newton-Raphson technique to solve the
constitutive equations of the material model. The objective of the investigation
is to study (i) the effects of cracking and transient creep on the ice response,
and (ii) the failure modes experienced by the ice sheet during indentation. The
influence of velocity and indenter size on the global and maximum local pressures
are also inveétigated. The accuracy of the solutions is examined by varying the

time increment and the mesh size used in the analysis.

INTRODUCTION |

The prediction ef ice forces on fixed offshore structures is one of the
classic problems in the study of ice indentation and impact. Recent studies have
shown that the magnitude of ice forces is influenced by many parameters including
(i) the environmental and loading conditions, e.g., temperature, rate of loading,
and type of confinement, (ii) the structural state, e.g., the material integrity
and the degree of textural anisotropy, and (iii) the size and shape of the
indenter, the aspect ratio, and the type of contact between ice and indenter.
Depending on some of these parameters ice can display very complex behavior
including elasticity, delayed elasticity, viscous creep, distributed cracking or
damage, and tensile cracking. Field observations and small-scale experimental
investigations have shown that ice can fail by crushing, spalling, radial and

circumferential cracking, buckling, and by a combination of these modes (see,



e.g., the deformation-mode map of Timco [1]).

It has been recognized that the empirical equation given by Korzhavin for
predicting ice forces is limited and requires the use of many factors to account
for some of the parameters mentioned previously. Understanding of the effects of
these parameters on ice forces requires more elaborate theoretical approaches,
e.g., the approximate and the finite element methods of analysis. The former
method has been used by (i) Michel and Toussaint [2], and Croasdale et al. [3]
based on the upper- and lower-bound plasticity solutions, (ii) Ponter et al. [4]
based on the reference-stress, power-law creep solution, and (iii) Bruen et al.
[5], and Ting and Shyam Sunder [6] based on the upper-bound, power-law creep
solutions. The finite element method of analysis has been reported by Shyam Sunder
et al. [7], Chehayeb et al. [8] and Tomin et al. [9].
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At low strain-rates (e.g. < 10~ s-l) creep flow is the dominant mechanism of

deformation. Fracture processes, however, are present during ice-structure

interaction, particularly at moderate to high strain-rates (10—6 st %0 1072 s—l).
Indentation under these conditions is dominated by progressive fracture or damage
which may significantly affect the ice response, especially the‘local ice pressure
acting on the indenter. Furthermore, Palmer et al. [10] and Cormeau et al. [11] |

2 s—l) brittle fracture models can

have shown that at high rates of loading (> 10~
predict global indentation pressures several orders of magnitude less than those
predicted by eléstic—plastic or crushing models.

The strains produced in ice during interaction with an indenter can be very
small. For example, it has been reported that a surface maximum strain of 0.15%
wvas measured in a floating platform toward the end of a drilling season of three
months (see Sinha et al. [12]). Laboratory tests by Cox et al. [13] on multi-year
sea ice have shown that the failure strain at peak uniaxial compressive stress
falls within the range of 0.05% and 0.20%. This is consistent with the test
results of Frederking and Timco [14], and Sinha [15] for sea ice, as well as those
of Sinha [16] for freshwater ice. Triaxial confinement in a compression test
increases the failure strain, but this is usually no more than 1%-2% (Jones [17];
Cox et al. [13]). As noted by Sinha et al. [12], for problems involving brittle
failure (such as high loading rate and bending) steady-state creep is not reached
and the fracture strains are approximately 0.05%. Over this range of deformation
transient creep (anelsticity) rather than steady-state creep is the dominant
mechanism of flow.

The above discussion points to the inadequacy of the use of an elastic-power



law or elastic-plastic model in ice-structure interaction problems involving
moderate and high loading rates where cfushing and brittle fracture may occur
before steady state is reached. Deformations associated with transient creep and
cracking, as opposed to steady-state creep, are thus major considerations in a
great variety of applied ice mechanics problems.

The objective of this paper is to numerically study the rate processes of ice
indentation at low to moderate rates of loading. For this purpose an infinite jce
sheet loading a vertical rigid cylinder under plane stress conditions and at the
temperature of -~-10°C is considered. Attention is focussed on the effect of
cracking on the indentation pressures, the propagation of cracks through the ice
sheet, and the effect of transient deformation on the ice response. The influence
of velocity, indenter size, time increment and mesh size on the numerical results
serve as test cases for the simulations.

The finite element method of analysis is used in the numerical study in
conjunction with a multiaxial differential flow model (Shyam Sunder and Wu [18,
19]) and the smeared cracking model (Rashid [20]). The flow model is developed in
the formalism of irreversible thermodynamics with internal state variables and can
model elasticity, transient creep as well as steady-state creep. The smeared
crack, which refers to a band of uniformly and continuously distributed
microcracks, is widely used in the finite element analysis of concrete and rock
fracture. A multiaxial strength criterion is used to predict tensile failure in
the model. _

The coupled, nonlinear and time-dependent constitutive equations of the model
are stiff and pose severe constraints on the development of a finite element
solution. To solve the constitutive equations, a Nevton-Raphson iteration
technique combined with the o-method of time integration is used to accelerate
convergence. The discretized system of finite element equations, on the other
hand, are solved with an incremental-iterative method in which the incremental

tangent stiffness matrix is updated at each iteration using the BFGS technique.

MULTTAXTAL DIFFERENTIAL MODEL

A constitutive model of flow in orthotropic polycrystalline ice has been
developed by Shyam Sunder and Wu [19]. Since only small deformations are
considered, the total strain is additively decomposed into the steady-state,
transient and elastic components. Two groups of state variables are identified:

the observable and the internal variables. The dissipation associated with



isotropic hardening is described by a scalar internal variable p, while the
dissipative mechanisms of steady-state and transient flow are described by the

tensorial internal rheological variables &g, and € _, respectively. The total strain

R
tensor £ is taken to be the observable state vari;ble. The instantaneous elastic
deformation 2, and the time-dependent anelastic deformation are described by
linear elasticity theory. Since transient deformation in polycrystalline ice is
recoverable it is taken to represent the anelastic deformation. The anelastic
deformation tensor is linearly proportional to the back-stress tensor R generated
during kinematic hardening.

The constitutive equations are derived from the Helmholtz free energy and the
dissipation potentials. Restrictions imposed by the Clausius-Duhem inequality on
the free energy yields the equations-of-state which relate the state variables (g,
2,0 Epo p) to their respective thermodynamic forces (o, o, 9y -BV), where ¢ is
the stress tensor, g; = ¢ - R is the reduced stress tensor, and BV is a scalar
drag-stress measure. The variable B represents a non-dimensional drag+stress,
while V is a temperature-dependent stress-factor given by V=VO exp(Q/NRT), in
which the constants Vo’ Q, Ny, R and T denote a temperature-independent constant,
the activation energy for steady-state (and transient) creep, the power law
constant, the universal gas constant and the temperature in Kelvin, respectively.
The evolution equations for the internal variables are obtained by normality of
the thermodynamic fluxes (time rates of change of the internal variables) to the
dissipation potential expressed in terms of the thermodynamic forces. These
equations are specialized for an isotropic material and summarized below in

engineering matrix notation.

(a) Strain-Rate Decomposition

b=t + & + & (1)

(b) Equations-of-State

5 =Dt =D(t- & - &) (2)
g = o R (3)
R=2/3AEH e or S =GR=(2/3)AE g, (4)

where D denotes the classical elastic rigidity matrix, and H, G denote

the strain-rate and stress transformation matrices, respectively. The latter



two matrices are linear operators transforming strain-rate and stress vectors

into deviatoric components. They are given by:

[ 2/3 -1/3  -1/3 ]
2/3  -1/3 ,
H = 2/3 1/2 , (5a)
Symmetric 1/2
L 172 |
and
( 2/3 -1/3 -1/3 ]
2/3 -1/3
G = 2/3 9 (5b)
Symmetric 2
L 2 ]

Also, the rigidity matrix contains two parameters E and v which denote
Young’s modulus and Poisson’s ratio, respectively. The parameter AE
represents an anelastic modulus of kinematic hardening. Since transient
deformation is considered to be incompressible, the relevant Poisson’s ratio
has the value of 0.5. For the temperature range of -5°C to -40°C, the

parameters v, E and AE can be taken to be temperature-independent constants.

(c¢) Evolution Equations

.. * '

8/, =S =XGs (6)
£ /8 = A\.S G . 7
2% = M3g =N (& - 5) (7)
B = (HE/od’eq) St,eq (8)

. ~

In Egs. (6) - (8), € is a reference strain-rate of unity, and H is a
temperature-independent constant. The superposed dot denotes time derivative
wvhile the subscript ’eq’ denotes equivalent value. The initial value of BV is
denoted by BOV. The evolution equation for the steady-state strain as given
by Eq. (6) is the classical power law formulation where the principal axes of
the steady-state strain-rate and the deviatoric stress coincide. The
parameter X is a function of the equivalent stress

2 T T* *

Geq =3/2 0°G o= 3/2 STHS _ (%a)



and has the following explicit form:

N-1

A =372 (1Y 9eq

(9b)
If o and V in Eq. (6) are replaced by 94 and BV respectively, the evolution
equation for the transient strain (Eq. (7)) is obtained. The parameter Ad is

a function of the equivalent reduced stress

*

2 T Ty s, (9¢)

=3/2 ¢ =3/2's

%4, eq a4 & 9 54

and has a form similar to Eq. (9b):

N-1

N
Xd = 3/2 (1/BV) %, eq

(9d)

Finally, the equivalent transient strain-rate that appears in Eqy4 (8) can be

determined from the strain-rate transformation matrix, i.e.:

€ =2/3 ¢ 'H ¢ (9e)

~

The values of the model parameters E, v, N, V, A, Bo’ H and the variables Q,

R, T used in the numerical simulations are listed in Table 1.

TENSILE CRACK MODEL

Smeared Cracking Model.-- The discrete and smeared cracking models are the

two methods of crack representation commonly used in the finite element analysis
of fracture in rock and concrete. However, the discrete crack representation has
the disadvantages of a non-automatic method of defining the inter-element line
cracks and a lack of generality in modeling their directions (Bazant and Cedolin
[21}). The smeared cracking concept, which models fracture as bands of cracks
smeared through the entire finite element, does not suffer from these shortcomings
and is consequently used in this study.

The indentation process is simulated under plane stress conditions, i.e., the
thickness of the ice sheet is small compared to the diameter of the cylindrical
indenter. It is further assumed that no cracks exist in the ice sheet prior to
indentation. A crack is assumed to form when the stresses satisfy a tensile

failure criterion. The orientation of the crack is orthogonal to the direction of



the principal tensile stress, except when the stress field is purely compressive,
in which case the the normal of the crack is assumed to lie in the direction of
the smallest compressive stress. Once the crack is formed, the material is
incapable of carrying stress in the direction normal to the crack face. The
originally isotropic stiffness matrix is changed into an orthotropic one, i.e.,
the modulus in the direction of the crack normal is reduced to zero. No shear
retention is allowed, and the Poisson effect is neglected. However, the material
parallel to the crack is still capable of carrying stress and a secondary crack
orthogonal to the first one may form subsequently. The stiffness of the material
is completely lost only when both orthogonal systems of cracks are formed.

Tensile Failure Criterion.-- A rate-sensitive multiaxial failure criterion

appropriate for ice, proposed by Ting and Shyam Sunder [22], is adopted in this
study. This criterion recognizes that (i) at loading rates smaller than a certain
threshold strain-rate, which for a grain size of 5mm and at -10°C is approximately
5 x 1070 s7! in uniaxial tension and approximately 1076 7! in uniaxial
compression, rate~dependent flow is the dominant mechanism of deformation, (ii) at
loading rates greater than the ductile to brittle transition strain-rate (e.g.
10_2 s_l) brittle fracture dominates in either tension and compression, and (iii)
at intermediate loading rates fracture becomes increasingly important relative to
flow as the strain-rate increases from the threshold to the high strain-rate.

The multiaxial criterion must be capable of describing the failure conditions
under uniaxial loadings. In uniaxial tension, the stress to nucleate a crack is in
general the fracture stress (tensile strength) Teg This is modeled by the

following equation:

. -

1/N
1/0tf = 1/0tm + 1/[W (S/So) ] (10)

where %em denotes the limiting fracture strength at the ductile to brttle
transiton strain-rate. The parameter W is the counterpart of the parameter V in
the flow model and follows the Arrhenius law. In uniaxial compression, the stress
at which the first crack nucleates is defined to be the "yield" stress. This is
postulated to occur when the lateral tensile strain equals the fracture strain
predicted by Eq. (10) under constant strain-rate tests. Once the yield stress is
reached, the material continues to sustain compressive load but loses its ability
to carry tensile load in the transverse direction. The compressive yield strength

%n is described by the following equation:



2 2 o, J1/N.2
1/ccn = 1/acm + 1/{V (8/80) | (11

where %em denotes the limiting fracture strength at the ductile to brittle
transition strain-rate. Eqs. (10) and (11) state that the tensile strength and the
compressive yield strength increase with strain-rate, but become insensitive to
this parameter at high rates of loading.

To generalize the above formulation to three dimensions, a rate-sensitive and
isotropic Drucker-Prager failure surface is proposed. This failure surface is

expressed as follows:

1/2

f(o) = le + J2 -k (12)
: > 2 s T
where I, = o + Oy * %2z 1S the first invariant of stresses and J, = 1/2 o'G

o
is the second invariant of the deviatoric stresses. Failure occurs when f(o) = 0.
The constants p and k at a given equivalent strain rate can be derived from two
uniaxial tests at the same constant strain-rate value, one in tension and the

other in compression. The resulting equations are:

1 (-ccn/otf) + 1
p = 1/2 (13)
3 (-0 /o, ) -1
cn’ tf
and
172 172
k = —Ucn(p - 1/3 ) = ctf(p + 1/3 ) (14)

wvhere the numerical value for the compressive stress 9en is taken to be positive.

Since 9 and o, g are given by Eqs. (10) and (11), p and k are dependent on

strain-rate. For strain-rates below the threshold value in tension, i.e.,
approximately 5 x 10—8 sal, pressure-insensitive flow dominates and %%n = Ttf

This implies that p = 0 and k is proportional to the equivalent stress, and the
failure surface reduces to the von Mises flow surface. At high strain-rates, e.g.,

above 10_2 s'1

, no flow can occur and elastic deformation is followed by brittle
fracture. The failure surface is strictly a fracture surface. At intermediate

strain-rates, the failure surface becomes a yield/fracture surface, i.e., a crack

forms as long as the criterion is satisfied, but in the case of a purely

compressive state of stress, the crack will nucleate in a plane perpendicalar to



the direction of the smallest compressive stress and will remain stable, although
it cannot support any tensile stress that subsequently might act across its
surface, A

A quadrilateral isoparametric element is used for the current numerical
analysis. Stresses are evaluated at the four Gaussian points and an element is
considered to be completely fractured only when the failure criterion is satisfied
at the two orthogonal directions at all four Gaussian points.

The strength criterion has been shown by Bazant and Cedolin [21] to yield
uhobjective solutions, i.e., the numerical results depend on the size of the mesh
used in the finite element analysis. This is generally found to be true for the
strain softening portion of the predicted stréss—strain curve, although some
results have indicated that the peak stress may not be affected. Consequently, it
is necessary to investigate the discrepancies, if any, between the solutions
obtained from different mesh sizes. The strength criterion rather than an
objective energy criterion based on fracture mechanics is used in the ,current
study because of the relative ease of implementation of the former in solving
problems involving hundreds of cracks.

The values of the fracture model parameters Tem’ Otf and W used in the

t
current study are listed in Table 1.

FINITE ELEMENT FORMULATION

An important factor in the development of finite element analysis is the
proper selection of a solution algorithm. Nonlinear problems, in general, require
the solution of a set of coupled, nonlinear algebraic equations. In addition, the
problems may be path-dependent (e.g., plasticity, non-conservative loading) or
they may possess multiple solutions (e.g., snap-through buckling). Also,
considerable difficulty may be encountered when the time-dependent constitutive
equations of the material model are stiff (Cordts and Kollman [23]).

In the current model, the discretized system of nonlinear equations are
solved with an incremental-iterative method. A number of iterations are performed
during each load step to dissipate residual forces until a convergence criterion
is satisfied. Two alternative criteria are used, one based on the norm of the
increment in the displacement vector, and the other on the increment in internal
energy. The tangent stiffness matrix is updated at each iteration using the BFGS
quasi-Newton method (Matthies and Strang [24]). This combines the advantages of

rapid convergence of the full Newton-Raphson method, in which full reformation of
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the stiffness matrix is performed at each iteration, and the economy of the
modified Newton-Raphson method, in which stiffness matrix update is only carried
out on an accepted equilibrium configurétion.

A nonlinear equation solver is used in conjunction with a numerical time
integrator to solve the constitutive equations for the incremental stresses and
incremental creep (transient and steady-state) strains. For rapid convergence, use
is made of the Newton-Raphson or tangent type iteration and the «-method of
numerical time integration (Chehayeb et al. [8]).

Solution of Finite Element Equations.-- In rate problems it is convenient to

formulate the finite element equations in incremental form. The basic approach in
an incremental technique is to assume that the solution at time ty is known, and
that the solution at time ti1 is required. The discretized system of equations at

time t, can be written as:
i+l

Ri,1’ = Byy1 - By’ " (1)
wvhere P, F=F(U) and R=R(U) represent the vectors of the nodal external, internal,
and residual forces, respectively, and U is the nodal displacement vector. The
superscript j denotes the iteration number within a given time step. Note that the
external force vector is assumed to be independent of the displacement. In the
incremental-iterative method, the incremental nodal displacement and residual
force vectors are defined respectively as follows:

jo_ j+1 3
4y =Y Uin (16)

Jo_ j j+1
Livp =R - Rig (17

The incremental displacements and residual forces are related by the incremental

stiffness matrix K, i.e.:

] i ]
Kim 4547 = Lia (18)

Eq. (18) is the so-called Quasi-Newton equation. The internal force vector is

defined as:

i o_ T b
Fig = J B" 95,1 49 (1%
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wvhere @ is the volume of the element, and B is the incremental (in the sense of an

increment from time t;, to ti+1) strain-nodal displacement matrix given by:
Ae = BAU ' (20)

The evaluation of the integral in Eq. (19) is based on a Gaussian quadrature
formula.
Noting Eq. (20), the constitutive relations expressed by Eqs. (1) and (2) may

be rewritten as a set of incremental element stress-nodal displacement relations:

Ao = DBAU - DAg (21)
- —"= ="=cr
where AEcr represents Agt + AEV, and D is the rigidity matrix. Eq. (21) can be put
into the following alternative form:

i

Gy~ I3 = DBy g - Uy) - DAy 540 7 Eeryy

y (22)

Creep strains that appear in Eq. (22) are nonlinear functions of stress since A
and Xd (Eqs. (6) and (7)) are not constants.

A two-level iterative algorithm is used to solve (the global form of) Egs.
(15)-(18) as well as the constitutive relation (Eq. (22)) for 91+1 at each new
time step E A line search procedure is used in the upper level (BFGS)
algorithm to minimize the component of the residual force in some search
direction. This procedure "damps" or scales the incremental displacement vector in
order to improve convergence characteristics of the iterative algorithm. It
requires, in effect, another subset of iterations until a specified tolerance is
not exceeded. Details of the BFGS method can be found in Matthies and Strang [24]
and Crisfield [25]. An outline of the algorithm is provided below:

(1) For each load increment determine a new incremental displacement vector

d’ using the following equation:
COURRIEE TSl AP (23)
This new vector defines the direction for the actual incremental

displacement vector d.



(2)

(3)
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The true displacement increment is determined from the following

equation:

g 3y 3 dar, 3
di1” = Yia Yy = M8 (24)

wvhere N is a step-length multiplier. The line search is initialized with

a value of nj = 1. Vith the displacement increment determined from Eq.
(24), compute the incremental stress and incremental creep strain vectors
from Eq. (22) using the iterative algorithm (lower-level iteration in k)
to be described later. In the first iteration on Eq. (22) the incremental
creep strain vector is assumed to be a zero vector.

Update the internal force vector using the nevly found incremental stress
vector and Eq. (19). This yields Ei+1j+1' The residual force vector
j+1
-i+l
procedure requires the residual force vector E and the incremental

can then be computed using Eq. (15). Next, the line search

displacement vector d’ to satisfy the following inequality:

d’ er j+1
=~ i+1 —-i+1

’ j’T . j
450077 Bin

V2N
el

(23)

where ¢ for a slack search is greater than 0, e.g., 0.8. If the tolerance

limit is violated, nJ is varied and the calculations in steps (2) and (3)
3+1 R j+1

. 1 = |
corresponding to the final accepted value of nJ determine the incremental
j+1 i+l

are repeated until Eq. (25) is satisfied. The vectors Qi+

values 91+1 and I in Eqs. (16) and (17). Convergence is checked
at this point. If convergence is not yet attained, the incremental values

are used to update the inverse stiffness matrix as outlined in step (4).

Two convergence criteria are used: (a) Ratio of norm of displacement
increment vector to norm of displacment vector at given time step is £
0.001; and (b) absolute value of the ratio of the internal energy at

iteration j+1 to the initial internal energy is < 0.001, i.e.:

j+1,T
4541 Ris1
0,7 i)
div T By

j+1

< 0.001 (26)
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Typically, four or five iterations are required for convergence at the
higher level if updating of the tangent stiffness by the BFGS method is
used. On the other hand, the modified Newon-Raphson method requires ten
or more iterations for convergence, and is unstable for high-rate
simulations.

(4) The updating of the inverse stiffness matrix is carried out according to

the following formula:

j+1,-1 - j+1_3+1,T j,-1 j+1 j+1,T, -
K11 =@ R T @ e TP (27)
where XJ+1 and yJ+1 are specially chosen vectors which are functions of
éi+1J+1 and £i+lJ+1 (see, e.g., Matthies and Strang [24]). The updated

inverse stiffness matrix is used in step (1) for the next iteration.
1

Numerical Integration of the Constitutive Equations.--The evaluation of the

incremental stresses and incremental creep strains (lower-level iteration)
requires the simultaneous consideration of Egqs. (22), (6), and (7). This involves
the use of incremental creep strain from iteration k to evaluate the incremental
stress for iteration k+1 using Eq. (22). The incremetal creep strain for iteration
k+1 is then evaluated with the «-method of numerical integration. For the viscous

strain, this requires:

e xS *a 28
&,i T %o’ela t (28)

be =g, -
=v = =v,i+l -v,i

*
where §a is a weighted average of the deviatoric stress vector in the time
interval At = (ti+1—ti) and Xa is derived from Eq. (9a) by weighting on the

stresses, i.e.:

* *
§a = (1 - a)§i + oS

*
5541 (29)

A, = 32 N a2 s T s HIED/2

o (30)

Note that use has been made of Eq. (9b) in arrivng at Eq. (30). The analogous
nature of the flow equations for steady-state and transient creep implies that

Eqs. (28) - (30) become the appropriate expressions for the transient strain when
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* * . .
£, Xa, and §a are replaced by g9 Xd,a’ and §d,a , respectively, i.e.:

: * ) * *
82y = 250, 084,00 BT = BN, alSy -~ S, )0t (31)
* : * * -
Sq,0 = (- @Sy 3 + o8y 4 4 (32)
- N *T * (N-1)/2
N, = 32 (17BN (372 S4, B Sq.q) (33)

Note that the expressions for the transient strain require knowledge of the
a-value of the variables §R* and B. In general, it is desirable to solve for all
the unknowns (i.e., AOg, &R, 4B, Agv, AEt) simultaneously by casting the
incremental constitutive equations in the form of a gradient matrix
pre-multiplying the vector of unknowns to give the ’forcing’ functions. Because of
the multitude of variables even in a plane stress problem, a simple iterative

approach which exploits the dependence of §R* and B on € is adopted here instead.

t
This involves the use of Eqs. (4) and (8) to eliminate §R* and B from Eq. (31). In

particular, use of Eq. (4) allows Eq. (32) to be rewritten as:
s, = (1-0)[S,* - 2/3 AE S, . - 2/3 AE A 34
24, « = ( —a)[—i - (Et,i)] + d—[_i+1 - (Et,i + Et)] (34)

Noting the scalar relationship €, eq = (ud eq/BV)N, integration of Eq. (8) yields
b ?
the relationship between the non-dimensional drag-stress and the incremental

transient strain. The o-form of this relationship is:

2 173 7 ) 1/3 1/2
B, = [B,” +2 ¢, HE/V J £t eq dt] | (35)
vhere St,eq is approximated as:
e, 2 2/3 (aes00)TH (s, /80) (36)
t,eq —t - -t

With §R* and B eliminated from Eqs. (32) ad (33), Agt in Eq. (31); like Agv in Eq.
(28), can be expressed as a function of the deviatoric stress at time t=ti+1,

. * . . .
i.e., §i+1 . The analytical expression can be written as:
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* *
£ A ot {(1-w)[S5, -2/3 AEe_ ,] + «[S, , -2/3 AE &_ .1}
A = Q d,d. 1 —t,1 =i+l —L,1 (37)

_t .
1 + 2/3 oAE g, d,aAt

Since xd’a is depezdent on Agt, Eq. (37) is in fact an implicit relation for AEt'
For the given §i+1 at iteration k, Eq. (37) is iterated to obtain A§t. This is
added to 8g  to give Ag , which in turn is used to estimate g, ; and hence §i+1*
at iteration k+1.

In the following numerical simulations o is set to 1, i.e., the backward
(implicit) Euler method is used. Typically, more than fifteen iterations are
needed for convergence at the lower level for the highly stressed elements. This
is unattractive since iterations are needed at each integration point within an
elemet (four in the case of a quadrilateral element), and highly stressed
elements may occur often in a typical finite element grid consisting of more than
130 elements. _ y

A lower-level algorithm that combines a Newton-Raphson or tangent type
iteration with the a-method is developed to accelerate convergence. This can be

derived from Eq.(21), which can be rewritten as:
£(80) = bg - D(&g - B ) (38)
where Ag¢ is prescribed and Afcr can be determined from expressions of the form

stated in Egqs. (28) and (37). Expanding £(4c) in a Taylor series, the following

expression is obtained:

A L © el ok
[80 - D(be - A )]° + |—| (86" - ag") = 0 (39)
940
Note the following expressions:

k K

80" = 9.1 -9 (40é)
k+1 k+1

be " = g5 TG (40b)
k+1 k k+1 k

AT - AT =gy T G (400)
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It is then easily verified that

Also, since 9, = (l—oc)gi T it follows that

dog = @ dgj g (41b)

Eqs. (4la, b) will be of use in the following derivation. The derivative in Eq.

(39) is easily derived from Eq. (38) as:

at ¥ ase 1
~—| = |T+D (42)
LAY do.,
- i+l
where
¥

aAEcr aAEcr

= a (43)
a0, do
—-i+1 =

It is necessary to evaluate the derivatives of the creep strain components
separately. For the steady-state component, differentiation of Eq. (6) followed by
substitution of Eqs. (9a) and (9c) yields:

k
LY 3 DN
& _ * % :
Voot D+ -0 Tt — 55T (44)
da, 2 o
=i+l . eq o
Since the incremental transient strain depends on 9441 through 949.i+1 and BV, the
b

corresponding derivative, i.e., aAgt/agi+l, is obtained via the chain rule and is
equal to GAst/acr e Hence, the required derivative can be evaluated using Eq.
- Ly

(44) by replacing o with 9y Note that this automatically implies replacing an by
* * N
dd,eq, A by Xd, and S by §d .

The required equation for the iterative process is obtained by substituting
Eq. (43) in Eq. (42), and finally in Eq. (39). Denoting the elastic compliance

matrix by C, the final result can be written as:

k

kel koD rc(ey - gy, ¢ (oe - 0e )] (45)

g, - o,
=i+l -i+1 T B §

where D’ is easily identified as the elastic-creep stiffness matrix:
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k,-1

0.y
br = 9*3 (46)
g

=i+1

The matrix D’ (global form) is used as the tangent stiffness in the BFGS
algorithm. Iteration on Eq. (45) yields the stress at i+l. Convergence is defined
to occur when the maximum absolute value of the relative change in point stresses
‘between iterations k and k+1 < 0.001. Application of this iterative scheme with
a=1 shows that convergence is typically achieved in five to ten iterations.

Code Verification.-- The finite element analysis algorithm has been

implemented in a computer code called DECNEC. The current implementation is a
two-dimensional version for plane stress problems and uses a four-noded
quadrilateral element. The accuracy of the computer code and the algorithm
described above has been verified in several simple test cases. They %nclude (1) a
rectangular element subjected to a constant displacement-rate normal to one of its
edges and with normal movement constrained on the other three sides, and (2) the
same constrained element subjected to uniform compressive stress normal to one of
its sides (see Fig. 1). These simulate uniaxial loading under constant
displacement-rate and constant stress, respectively. The results compare well with
those obtained from solving the simultaneous differential equations governing ice
deformation (Egs. (1) - (9)) using the DVERK routine (Runge-Kutta-Verner fifth and
sixth order algorithm) in the IMSL package. These results are shown in Figs. 2 and
3. The experimental data in Fig. 2 refer to the uniaxial constant
displacement-rate tests on columnar-grained sea ice by Wang [26], while those in
Fig.3 refer to creep tests on granular snow-ice by Brill and Camp (reported in
Sinha [27]).

NUMERICAL SIMULATIONS

Description of Case Studies.-- Numerical simulations are performed for the

'nine cases listed in Table 2. Two simulations are run for each case: the first
uses the pure flow model and the second uses the combined flow and crack model.
Additional simulations are carried out using a version of the combined model which
does not take into account transient or anelastic deformation.

The first case serves as a reference for the other eight cases. It

corresponds to an ice sheet movingvat the velocity of 3 ft/hr (0.91 m/hr) against
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a vertical cylindrical.indenter of diameter 350 ft (106.68 m) at the ambient
temperature of -10°C. The time increment used for analysis in the reference case
is 50 seconds and the mesh is of type A (to be explained). The base velocity of 3
ft/hr, about four times greater than that used in an earlier study (Chehayeb et
al. [8]), is used to simulate a faster rate of loading. This allows the study of
the effect of cracking on the indentation process. The rate of loading, however,
is slow enough to limit the amount of cracking to a level that can be handled
numerically without encountering instability and incurring great costs.

The eight cases explore the influence of various parameters on the ice
pressure generated during indentation. Cases 2 and 3 demonstrate the influence of
ice sheet velocity. Case 4 attempts to quantify the effect of a smaller indenter,
while Case 5 shows the effect of a grounded rubble pile or an accreted ice foot.
Since the material model is rate sensitive, it is important that the effect of
different time increments, if any, should be studied, and this is the objective of
Cases 6 and 7. Cases 8 and 9 seek to investigate if the results are mgsh
dependent. All cases are run for fifty minutes.

Numerical Implementation.-- A typical finite element mesh used in this study

is illustrated in Fig. 4. The analysis is based on the upstream portion of the ice
sheet (a quarter-plane) because the portion on the downstream has hardly any
contact with the indenter (Ponter et al. [3]). The criteria for setting up the
mesh have been described in Chehayeb et al. [8]. Three mesh types, A, B, and C are
used in the simulations (see Table 2). Mesh A has nine circumferential and
fourteen radial elements (Fig. 4), Mesh B has twelve circumferential and eighteen
radial elements, and Mesh C has six circumferential and ten radial elements. The
simulations for all nine cases are carried out with the assumption of a roller
interface condition between the ice sheet and the indenter. This condition
represents a free interface with no frictional stresses.

For a given time step, the excitation is defined in terms of an imposed
displacement in the z-direction at the far-field boundary nodes. This displacement
value is made to increase linearly in time, consistent with the chosen uniform
velocity.

The choice of time increment is of considerable importance when the
constitutive model is described by stiff differential equations. This is often the
case for a model formulated with internal variables (Shih [28]). This particular
study has found that a time increment of 50 seconds is a reasonable compromise

between accuracy and computational effort.
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Discussion of Results.-- Table 3 summarizes all the results for the nine test

cases. The maximum interface pressure is determined as the maximum stress
developed at the interface during the simulation period of fifty minutes. The
global force during indentation is calculated from the stresses in the innermost
layer of elements. The global pressure is defined as the global force divided by
the indenter diameter and the ice sheet thickness. Since there are four
integration points in each element, a weighting procedure is used as in Cook [29]
to adequately account for the contribution from each point.

The results for the global pressure obtained from the flow and combined
models are compared first. Table 3 shows that the global pressures obtained from
both models are approximately the same in all cases, except in Case 3 where the
global stress versus time relationship predicted by the combined model displays a
pronounced softening behaviour with a ’‘residual’ pressure about 60% of the peak
value (see Fig. 5). It should be noted that in the majority of the cases the
global pressure predicted by the combined model is apparently slightly greater
than that predicted by the pure flow model. This, hovever, is caused by the
cracking which perturbs the global pressure and causes it to fluctuate slightly
about the value predicted by the flow model. Moreover, the insensitivity of the
global pressure to cracking, except for Case 3, is the consequence of the facts
that no cracks are assumed to exist in the ice sheet before indentation and that
creep flow rather than cracking governs the ice response. Even in Case 3 the
cracking does not occur rapidly enough and in sufficiently great quantities to
yield a maximum global stress prediction different from that of the flow model,
although subsequent cracking does reduce the global pressure significantly. In
fact, the average strain-rate determined from the ratio of the velocity to twice
the indenter diameter is only 2.4 x 107° s“1 in Case 3. The situation just
described has its counterpart in high rate tests. Timco [1] has observed that
there is no apparent difference between indentation and penetration loads at high
rate tests (10_2 s’1 to 10 s_l). He attributed this to the almost instantaneous
formation of cracks vhen the test specimen comes into contact with the indenter.
The indenter is in fact interacting with damaged ice on impact and, as a result,
the indentation and penetration loads are not much different. Timco has also
remarked that a difference between the two loads is indeed observed at lower rate
tests. This agrees with the results of this study since the residual global
pressure in Case 3 can be interpreted as the penetration pressure, as opposed to

the peak global pressure vhich corresponds to the indentation pressure.
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Table 3 shows that the maximum interface normal pressures predicted by the
flow model are greater than those predicted by the combined model, except for case
3. These results suggest that when the amount of cracking is small as in low rate
tests, the local stresses at the ice-structure interface tend to be relieved. As
the loading rate increases, cracking may occur fast enough to cause complete
failure of the some of the interface elements and the reduction in contact area
tends to increase the interface pressure. An examination of the crack pattern for
Case 3 shows that three interface elements have completely failed during the
simulation period, and this loss of contact area may account for the higher local
pressure predicted by the combined model compared to that predicted by the flow
model.

Since the ice-structure interaction process can only be realistically
simulated byvtaking into account the effect of cracking, only the results
predicted by the combined model are interpreted in the remaining part of this
discussion. Table 3 shows that in all cases except Case 3 the maximumiinterface
pressure is less than 10% higher than the global pressure. For Case 3, the maximum
interface pressure is about 50% and 25% greater than the residual and peak global
pressures, respectively. This suggests'that the modefate amount of cracking has a
greater effect on the local interface pressure than the global pressure.

Comparison of Case 2 with the reference case shows that reducing the ice
sheet velocity by one-third leads to a 14% reduction in the global and the
interface pressures. This is in good agreement with the predictions of an
approximate theoretical model, valid for flow with negligible cracking, which
suggests that the pressure varies with the (1/N)th power of velocity (Chehayeb et
al. [8]). On the other hand, comparison of Case 3 with the reference case suggests
that the flow model is no longer valid when cracking is not neligible.

Results for Cases 4 and 5 show that a 30% decrease of indenter size relative
to the reference case increases the global and interface pressures by about 14%,
vhile a relative increase of indenter size by 40% decreases the pressures by about
12%. The smaller indenter experiences larger global pressure, although the global
force is larger for the larger indenter. These results agree with those in the
earlier study by Chehéyeb et al. [8], since the small amount of cracking in these
cases does not have a significant effect on the ice response.

The effect of time increment on the global and interface pressures can be
seen by comparing their values for Cases 1, 6 and 7 in Table 3. The global

pressure may not be affected, but differences do exist between the interface
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pressures. Furthermore, if the history of the global pressure is examined for the
three cases, it is found that althoﬁgh the difference appears to be neligible at
steady state, some discrepancies are observed at small times (or strains) when
transient creep dominates. The error largely arises because of the difficulties
associated with integrating the stiff and highly coupled constitutive equations of
the transient creep model.

The results for Cases 1, 8 and 9 show that the global pressure is essentially
independent of mesh type (see Fig. 6). Some discrepancy can be seen in the
interface pressures, but overall it can be concluded that the results are only
slightly mesh-dependent. It should however be noted that mesh sensitivity occurs
for the descending branch of the curve in Fig. 5, although .the peak and residual
global pressures are not influenced by different mesh sizes. Note also that the
meshes A, B and C are generated automatically, and the sizes of the ice sheet in
the three cases can only be made approximately equal. This has negligible effect
on the results, and can be easily confirmed by comparing the predictigns of the
pure flow model using the three meshes.

The pattern of crack propagation through the ice sheet, useful for studying
the ice failure mode, is illustrated for Cases 1 and 3 in Figs. 7 and 8,
respectively. In both cases, cracking occurs first in the element which lies along
the z-axis and is closest to the indenter. Initially, the orientagion of the
individual cracked zones tends to be in the radial direction, suggesting that they
are formed under hoop stresses. As loading continues, the pattern of propagation
is primarily in the radial direction. In Case 1, the amount of cracking is
insignificant; none of the elements have completely failed during the simulation
period. In Case 3, individual cracked zones can be observed to lie in the
circumferential direction in addition to those lying along the radial direction,
suggesting that radial stresses are now sufficiently large to causevcracking. of
the nine elements in contact with the indenter, three have completely failed.
~ Elements that are completely cracked can also be found in the second and third
layer of elements. These observations show that for low rates of loading radial
cracking is present but does not govern ice defomation, while at higher rates of
loading, failure may occur by both radial and circumferential cracking which can
influence the ice-structure response significantly.

Figure 9 compares the global pressure-time relationships predicted by the
combined model and a version of the same model which neglects transient

deformation. The simulations are carried out under the conditions of Case 2. It
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can be seen that without transient defomation the material fractures prematurely.
This is because transient deformation allows the material to store energy while
stress redistribution takes‘place; This reduces the rate of load increase and
delays the occurrence of crack formation. In a large ice sheet, considerable
amount of energy is absorbed by transient deformation, and the material flows in a

ductile manner.

CONCLUSIONS

This paper has presented a finite element method for the analysis of cracking
behaviour during ice indentation at low to moderate rates of loading. The
numerical simulations are carried out under the assumptions of (i) plane stress
conditions, (ii) a roller type of contact between ice and indenter, (iii) an
infinite ice sheet with no pre-existing cracks, and (iv) a constant temperature of
-10°C. For realistic simulations a flow model which accounts for transient creep
is used in conjunction with the smeared cracking model. The solution gf the
initial boundary-value problem involves the use of a two-level iterative algorithm
which employs (i) the BFGS technique to solve the discretized finite element
equations, and (ii) a Newton-Raphson technique, combined with the «-method of time
integration, to solve the constitutive equations.

 Under the loading conditions and assumptions considered in this paper, the
simulations indicate that:

(i) Cracking has insignificant effect on the global indentation ﬁressure,
although in the case of the moderate rate of loading (Case 3) the global pressure
can exhibit softening behaviour resulting in a residual or penetration pressure
about 60% of the peak value.

(ii) The maximum local interface pressure is less than 10% greater than the
global pressure for the slow rate tests. In Case 3, the local pressure is 25% and
50% greater than the peak and residual global pressures, respectively.

6 s_l) radial cracking appears but

(iii) At low rates of loading (e.g., < 10~
does not affect the ice response significantly. Under more brittle conditions
radial cracking, followed by circumferential cracking, relieves the global
pressure, but also increases the local pressure due to the loss of contact area.

(iv) Transient creep can influence the ice response. This can occur by
delaying the cracking and hence the failure of the ice sheet, or by absorbing a
significant portion of the energy of excitation and hence causing ice to flow

without much softening.
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NOMENCLATURE

= parameter describing anelastic deformation
= non-dimensional drag stress;

= initial drag stress;

Q

= strain rate-nodal velocity matrix;
elastic compliance matrix;

= true incremental displacement vector;

~

= incremental displacement vector

10 1 1o 1O 1m Wm & >
il

= elastic rigidity matrix;

~

= elastic-creep stiffness matrix;

= Young'’s modulus;

= failure criterion

= function of incremental stress; g
internal force vector;

= stress transformation matrix;

= constant in evolution equation for the drag stress;
= strain-rate transformation matrix;

IH m@me: I Im ikh | O
i

= identity matrix;

= first invariant of stresses;

—_
I

= second invariant of deviatoric stresses;

N
i

= variable in failure criterion;

= incremental tangent stiffness matrix;

= power law exponent;

= variable in failure criterion;

= external force vector;

= activation energy for creep;

= incremental nodal residual force vector;
= universal gas constant;

= back stress vector, or residual force vector;

*
|

= deviatoric stress vector;

*

= deviatoric stress-difference vector;

Q
*
|

= deviatoric back stress vector;
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= time;

L B
|

temperature;
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nodal displacement vector;
stress-factor for compressive loading;
temperature~independent stress-factor;
stress-factor for tensile loading;
vectors for use in the BFGS method;

parameter in time integrator;

reference strain-rate of unity

equivalent transient strain-rate;

= equivalent steady-state strain-rate;

total strain vector;

creep strain vector;

elastic strain vector;

transient strain vector;

steady-state strain vector;

parameter found from line search procedure;
associative steady-state flow rule variable;
associative transient-flow rule variable;
maximum compressive strength;

compressive strength;

equivalent stress;

equivalent stress-difference;

maximum tensile strength;

tensile strength;

normal stress components in Cartesian frame;
stress vector;

stress difference vector;

tolerance for slack line search

volume of a finite element;

time rate of variable; and

incremental form of variable.



Table 1 - MATERIAL PARAMETERS

Flow Model Crack Model
Parameter Value Parameter Value

E 9.5 GPa o 3.0 MPa
cm

v 0.3 o 1.8 MPa
tm

N 3 W 105 MPa '

\Y 105 MPa

A 0.0626

B 0.410

0
H 0.0855

Q = 67 KJ/mol, R = 8.314 J/mol/K, T = 263 K
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Table 2 — SUMMARY OF CASES

Case Ice Indenter Time Mesh Temp.
Velocity Diameter Increment Type
(ft/hr) (ft) (sec) (°C)
1 3 350 50 A -10
2 2 350 50 A -10
3 6 350 50 A -10
4 3 250 50 A -10
5 3 500 50 A -10
6 3 350 25 A -10
7 3 350 75 A -10
8 | 3 350 50 B -10
9 3 350 50 C -10

Note: 1 ft = 0.3048 m
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Table 3 — SUMMARY OF RESULTS

Global Pressure Maximum Interface Pressure
(MPa) (MPa)

Case | Flow Model Combined Model |Flow Model Combined Model
1 1.310 1.319 1.445 1.432

2 1.136 1.132 1.252 1.232

3 1.670 1.076% 1.849 2.034

4 1,482 1.500 1.630 1.615

5 1.160 1.156 1.274 1.253

6 1.302 1.319 1.437 1.429

7 1.317 1.319 1.459 1.390

8 1.313 1.335 1.463 1.441

9 1.326 1.332 1.401 1.358

* residual stress; peak stress 1.7 MPa
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FIGURE LEGENDS

Figure 1 Test Problem for Verification of Computer Code

Figure 2 Comparison of Finite Element and Runge-Kutta Routine Results with
Uniaxial Compression Test Data on Columnar-Grained Sea Ice by Vang
(1982) :

Figure 3  Comparison of Finite Element and Runge-Kutta Routine Results with
Uniaxial Test Data on Granular Snow-Ice (Reported by Sinha, 1979)

Figure 4 Finite Element Grid for Numerical Simulations

Figure 5 Predictions of Global Pressure vs. Time Using (a) Pure Flow Model, and
(b) Combined Flow/Crack Model

Figure 6 Comparison of the Predictions of Global Pressure vs. Time for Three
Mesh Types . '

[

Figure 7 Pattern of Crack Distribution in Case 1

Figure 8 Pattern of Crack Distribution in Case 3

Figure 9 Predictions of Global Pressure from Comnbined Flow/Crack Model (a) Vith

and (b) Without Transient Creep
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