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PREFACE

This final report concludes CNRD 13-2. The project reported herein is part of

| ¥ a larger project sponsored by Conoco to develop a better understanding of the

pile-soil interaction associated with foundation piles for a tension leg platform.

%j The work reported was performed by The Earth Technology Corporation, acting
as a designated subcontractor to Det Norske Veritas. The project team was

composed of the following staff members:

Hudson Matlock, Viece President of Research and Development, provided

I
[ 2

overall technical direction of the project.

=1

Tom Hamilton was responsible for project planning, administrative matters

FE=
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and the production of this report.

m . Dewaine Bogard was responsible for the development of the small-diameter
gj pile segments and the performance of the field testing program.
. Ronald Boggess and Neil Dwyer assembled the data acquisition system.
ﬂ . Lino Cheang assisted in data reduction during and after the field tests.
o o Leon Holloway, assisted by Fleet Brown, supervised the field operations.
. Jean Audibert, Manager of the Houston office, provided project guidance

and report review.

Special thanks go to Tore Kvalstad and Kjell Hauge of Det Norske Veritas and
Messrs. Jack H. C. Chan, Jeff Mueller and George Santos of Conoco for their

support. We would also like to thank Mr. Alan Young and the McClelland
Engineers, Inc. field crews for a job well done and Mr. Bryan Fisher of Small
b Systems Solutions, Inc., who developed the data acquisition software for this
project. Kjell Karlsrud of NGI and Lars Grande from the University of

fid Trondheim observed portions of the offshore test.
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EXECUTIVE SUMMARY

Conoco is sponsoring a research program to improve the understanding of

pile-soil interaction resulting from static and cyelic tensile loading that will be

produced by a deep-water Tension Leg Platform (TLP). The goal of the program
is to develop design procedures and recommendations for pile foundations for

this type structure.

The project planning was authorized under a separate authorization, CNRD 13-1.

The results of this work were two technical reports, one by Det Norske Veritas

-
B
L2

and one by The Earth Technology Corporation.

| =

These reports outlined a three-part experimental program consisting of 1) a

laboratory model pile test program in Norway; 2) a field testing program on

g':; small diameter model pile segments in the Gulf of Mexico; and 3) a field testing
o program on a large diameter instrumented pile at the same offshore site as the
- small diameter tests. Veritas was to conduct the laboratory study with The
m Earth Technology Corporation performing the two field test programs.

This report is The Earth Technology Corporation's final report for Subproject

CNRD 13-2. The work reported includes 1) producing a site characterization

bBi |

study; 2) developing small-diameter pile segment instruments and related data

£

acquisition and loading equipment and 3) performing field tests and reporting the
data.

The site characterization study was completed in April, 1982. The results were

reported in The Earth Technology Corporation's CNRD 13-2 Volume I report. In

general, the site selected for field tests consists of underconsolidated to

gj normally consolidated clay, typical for this region of the Gulf of Mexico. The

characterization study included in situ testing using cone penetrometer and
?j wireline vane shear as well as a comprehensive suite of laboratory tests. The
- result was a comprehensive set of soil parameters which could be used to
E‘? develop pile capacity predictions based on any of the normally used criteria and

most of the newer effective stress concepts.

B
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Four small-diameter pile segment tools were developed to be used in the field
testing program. Each has the capability of measuring shear transfer, axial

displacement, total lateral pressure and pore water pressure. A specially

~designed data acquisition system, including hardware and software, was devel-

oped to handle the data recording and processing needs. The entire system,
including the loading mechanism, was proof-tested on land at two different

locations to insure proper operation and crew familiarity with the equipment.
The offshore field tests were performed in late November and early December,
1982. Testing was done in three test holes at three or four test levels in each
hole. A final test plan for the work was submitted in August, 1982, and was
designated as Volume II of the CNRD 13-2 project. This report outlined the field
testing program which consisted of the following:

1. Immediate (after driving) tests,

2. Short-term tests,

3. Long-term tests,

4. Load controlled progressively increasing cyclic tension tests.

5. Two-way (tension-compression) small-displacement cyclic tests.

6. Retests on pile segments after additional consolidation had been

allowed following large-displacement cyeling.

The test program was performed with no major difficulties or malfunctions. The
results are reported in this final report, CNRD 13-2, Volume IIl. The results of

the tests indicate the following:

1. For long and short-term load tests on previously untested pile
segments, the measured maximum friction was in all cases greater
than the undisturbed shear strengths from both the field and

laboratory soil testing programs.

xi
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The minimum friction measured after large displacement cycling wasv
approximately equivalent to the average undrained shear strength
estimated using SHANSEP procedures (Ladd, et al, 1977).

Large—diéplacement 'cycling resulted in a reduction in pile friction of
50% in Stratum I and 33% in Strata II and III from the maximum

friction on previously untested pile segments.

The majority of the loss in friction from large-displacement cyecling

oceurred in the first ecycle.

In almost all cases, a significant drop in effective pressure was
observed between the first and second tension cycle to failure

(following the compression cycle to failure).
After the drop in effective pressure noted above, subsequent cycles
produced a reduetion in pile friction with no further significant change

in effective pressure at failure.

After consolidation and first cyele loading to failure in tension,

“subsequent cycles showed increasing effective pressure during plastic

slip with no increase in pile friction.

Load-controlled one-directional cyeling resulted in the same maximum
frictional capability as first cycle loading to failure. Small-
displacement two-way cycling, with increasing displacement ranges,
produced a maximum friction value approximately equal to the

degraded friction from large-displacement eyeling.

Shear transfer-displacement (t-z) curves became elastic-plastic after

large displacement cyeling.
Initial slip occurred at displacements ranging from 0.46 mm to

0.91 mm, which are equivalent to 0.6 to 1.2 percent of the pile

diameter.

xii
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The results of this program will be used to further develop the plans for the
large diameter instrumented pile test. Also, the data will be backfitted using
the CASH computer program which is being developed to better understand the
pile-soil interaction mechanism. Comparisons of this information with that from
the laboratory work and the subsequent large-diameter tests should provide a
wealth of information for the development of design guidelines for tension leg

platforms in clay.

Xiii



1.0 INTRODUCTION

1.1 Purpose of Study

Conoco is currently constructing the first tension leg platform (TLP) for the
Hutton Field in the North Sea. The TLP concept is considered to be a feasible
solution for other deepwater locations, including the Gulf of Mexico. However,
in order to increase the economic feasibility of this type structure, a better
understanding of the pile-soil interaction is needed. Since TLP foundations are
subjected to continuous cyclic loads in tension, careful study of cyelic behavior
is a requirement. The degradation of frictional capacity under this type loading
has been observed in laboratory tests (Holmquist and Matlock, 1975; Bogard and
Matlock, 1979), but the mechanies are not well understood, particularly under in
situ conditions. To address this poorly understood phenomenon, Conoco
authorized Det Norske Veritas and The Earth Technology Corporation, as a
designated subcontractor, to conduet a study with the objective of improving the
technology relating to TLP foundations. Specific emphasis was placed on soil

conditions found in the Gulf of Mexico.

1.2 Previous Reports

1.2.1 Planning Study

The initial phase of the project was a planning study conducted during the

summer of 1981 under authorization from Conoco Norway. The final products

of this study (CNRD 13-1) were two technical reports which outlined a

comprehensive plan for the research work. The reports are as follows:

1. Veritas Report No. 81-0587: Tension Pile Planning Study, Sub-
project CNRD 13-1 Final Report, August, 1981.

2. Final Technical Report, Subproject CNRD 13-1, Report No. 81-204,
"The Earth Technology Corporation, August, 1981. ‘



~
g
fend

3
d

The studies resulted in a recommendation to perform a three-phase program.
One phase was to be a laboratory model study on 2.54 cm (1.0 in.) diameter
instrumented model piles. This work was to be conducted in a specially
constructed triaxial cell equipped with a loading mechanism which would allow
the model pile to be subjected to varying degrees of tension and compression

cyeling.

The second phase included in situ load tests on 7.62 cm (3.0 in.) diameter
instrumented model pile segments. The site was planned to be at a platform
offshore Louisiana near the Mississippi River delta. Soil conditions at this site
were believed to be similar to those at prospective deepwater TLP sites in the
Gulf of Mexico.

The third phase of the plan was to include a pile load test on an instrumented
76.2 cm (30.0 in.)diameter pile at the same site as the instrumented segment
tests.

Veritas was to be primarily responsible for condueting the laboratory test
program while The Earth Technology Corporation was assigned responsibility
for the two in situ test programs, including interpretation of soil conditions at

the site and analysis of test results.

1.2.2  Site Characterization Study

The first two phases of the project, the laboratory tests and the instrumented
segment tests, began in November, 1981, as Conoco Norway subproject CNRD
13-2. Two reports have been issued by The Earth Technology Corporation

prior to this final report.

The first report provided doeumentation of the site selected for the small pile
segment and instrumented pile testing. This report was entitled:

Tension Pile Study, Volume I, Site Investigation and Soil Characterization
Study at Block 58 West Delta Area, Gulf of Mexico, April, 1982.



The contents included the following information:
. Reasons for selection of the site

. Description of the detailed field investigafion which included in situ

cone penetrometer and vane shear tests

. Results of a comprehensive laboratory testing program

. Site characterization

. Analysis of pile capacity based on conventional and new methodologies
El 1.2.3 Pile Segment Test Plan
i
b

The second report issued by The Earth Technology Corporation under CNRD 13-

2 was entitled:

Tension Pile Study, Volume II, Plan for Performing Small- Diameter Pile

Segment Tests, August, 1982.

This report presented a description of the instruments and data acquisition

systems to be used, and a detailed field operations plan.

1.3 Final Report

i% This report is the final technical report to be issued under CNRD 13-2. Included
are sections which describe the test instruments, the test system, the per-

formance of the field tests, and presentation and analysis of the test results.

Subsequent reports will be issued under CNRD 13-3.
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1.4 Continuing Work

The Earth Technology Corporation is presently conducting the third phase of the
program outlined in the 1981 Planning Report. This third phase will include the

following:
. A load testing ‘program on a large-diameter instrumented pile
. An additional series of small diameter-pile segment tests
. Continued theory development and correlation with test results
. Guidelines for TLP foundation design in clay

The results of the test programs developed by Veritas and The Earth Technology
Corporation are expected to significantly increase the understanding of foundation

requirements for Tension Leg Platforms.
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2.0 TEST SITE CHARACTERIZATION PROGRAM

2.1 Test Site Selection

A search for a suitable test site was performed as part of the initial planning
study and was reported in detail in The Earth Technology Corporation's "Final
Technical Report, Subproject CNRD 13-1", submitted in August, 1981. The

general site requirements were as follows:

- 1. Test stratum homogeneity
2. Soil type and stress history
Stratum thickness

Operational considerations

The site selected was located in Block 58, West Delta Area of the Gulf of Mexico.
The generai location in shown on Plate 1. From preliminary assessments, it was
determined that, of several candidate sites, soil conditions at this location were
most likely to resemble those at potential deep water TLP sites in the Gulf of
Mexico. An added advantage was the availability of an existing platform at the
location which could be used as a test structure for the small-diameter segment

tests as well as the subsequent large pile test.

2.2 Detailed Site Investigation

2.2.1 General

In November, 1981, a detailed site investigation was performed near structure "A"
in West Delta Block 58 to verify the suitability of the site and to obtain the

information needed to fully characterize the existing soil conditions.
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‘The investigation consisted of three separate borings in which the following were

accomplished:

1. Cone penetrometer tests from 3.7 m (12 ft) to 77.1 m (253 ft) below
the seafloor '

2. In situ vane shear tests at intervals of 3.05 m (10 ft.) from 6.1 m (20
ft.) to 74.4 m (244 ft.) below the seafloor

3. Push samples from the seafloor to 73.2 m (240 ft.) below the seafloor

to be used in an extensive laboratory testing program.

Details of the site investigation, laboratory testing, and data interpretation
programs were presented in The Earth Technology Corporation's "Tension Pile
Study, Volume I, Site Investigation and Soil Characterization Study at Block 58,
West Delta Area, Gulf of Mexico", dated April, 1982. A summary of this study
is presented in the following sections.

2.2.2 Field Operations

The geotechnical field program was conducted over a nine-day period beginning
on November 4, 1981. The site investigation was planned and supervised by The
Earth Technology Corporation, Inc. with the field work contracted by Conoco to
MecClelland Engineers, Inc.

Operations were performed from the M/V R.L. Perkins. Drilling and sampling was
accomplished using a skid-mounted Failing 2000 rotary drilling rig operating

through a centerwell in the deck of the vessel. The borings were drilled using

115 mm (4-1/2 in) IF drill pipe. A motion compensation system was used to.

control vertical motion of the drill string during sampling and in situ testing.

In situ tests were also performed through the drillstring using wireline operated

tools. Contmuous cone penetrometer tests (CPT) were accomplished using the

"Swordfish" system. In situ remote vane shear tests were also performed.
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2.2.3 Laboratory Testing

An extensive laboratory testing program was conducted on soil samples recovered

from the field investigation. The purposes of the program were to fully document

the site and to develop the soil parameters required to compare future small and

large-diameter test results to various pile capacity design methods.

Laboratory tests were performed at the following laboratories:

e W b e
T

[S7]

The Earth Technology Corporation, Long Beach, California
McClelland Engineers, Inc., Houston, Texas

Det Norske Veritas, Oslo, Norway

Norwegian Institute of Technology, Trondheim, Norway

Norwegian Geotechnical Institute, Oslo, Norway

The results of the programs conducted by The Earth Technology Corporation'and
McClelland were discussed in The Earth Technology Corporation's CNRD 13-2,

Volume 1 report and are summarized in the following paragraphs.

The laboratory programs consisted of classification, physical property and

strength tests. Classification tests included

(1)
(2)
(3)
(4)
(5)

natural moisture content
unit weight

specific gravity
Atterberg limits

hydrometer tests.

Physical property tests included stress history evaluation based on the results of

one-dimensional consolidation tests and K, triaxial consolidation data.



The strength testing program ranged from simple tests to the very sophisticated.

Included were

(1) miniature vane shear

(2) unconfined compression

(3) unconsolidated-undrained triaxial

(4) isotropically consolidated-undrained triaxial

(5) anisotropically (K,) consolidated-undrained triaxial

(6) anisotropically (K,) consolidated-undrained direct simple shear

2.2.4 Site Characterization

From the results of the field and laboratory testing programs, the subsurface

conditions in Block 58, West Delta Area were classified as follows:

Depth, m(ft)
Below the Seafloor

Stratum From To Soil Desecription
I 0 - 244 Very soft to soft olive gray
(0 - 80.0) clay with silt pockets and
partings.

1I 24.4 - 48.8 Soft to stiff gray silty clay.
(80.0 - 160.0)

I 48.8 - 77.1 Stiff to very stiff gray clay
(160.0 - 253.0) with shell fragments.

v 77.1 - Termination* Gray fine sand.
(253.0 - Termination*)

* Termination depths in the three boreholes ranged from 73.2m (240 ft.) to
77.4m (254 ft.) below the seafloor.



Further analysis of the test results indicéted that the soil is underconsolidated.
This was expected since the geologic history of the Mississippi River delta
indicates a period of rapid deposition for this portion of the Gulf of Mexico. The
release of dissolved gases from the samples after recovery could have resulted
in the sample disturbance which, in turn, could have masked true stress history
conditions. However, we believe that very good samples were obtained. This
is evidenced by the comparison of estimated and measured pressures discussed

later in this report.

The estimated maximum past pressure of soils at the West Delta site are shown
on Plate 2. This profile was based on results of consolidation tests and from
empirical correlations with liquidity indices. Taking these in situ stress
conditions, together with the results of normalized laboratory tests, inferred

in situ shear strength orofiles were developed and are shown on Plate 3.

2.2.5 Conventional Axial Pile Design Analysis

In order to comparé results from future small and large-diameter in situ pile
tests to conventional pile design, pile capacities were developed using the results
of the site characterization study and commonly used axial capacity calculation
methods. Methods considered were:

(1) API RP 2A (1981)

(2) Lambda (Vijayvergiya and Focht, 1972)

(3) Effective Stress. 8 (Burland, 1973)

(4) Simplified General Effective Stress (Esrig and Kirby, 1979)

The vertical pressure distribution as a function of depth to be used with the
effective stress methods is given on Plate 4. The resulting unit skin friction
values using both total and effective stress concepts were calculated and are
shown on Plate 5. Comparisons of these values with those actually measured in
the field during the small-diameter segment tests will be given and discussed in
later portions of this report.
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It should be realized that all of the above pile capacity computation methods
address only static axial capacity. The primary purpose of this CNRD project
is to better understand the pile-soil response of piles loaded eyelically in
tension. The test results included in the remainder of this report, along with the
laboratory tests by Veritas and the large-diameter pile test by the The Earth

Technology Corporation, are expected to increase this understanding.
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3.0 SMALL DIAMETER PILE SEGMENT TEST SYSTEM

3.1 General

After ecompletion of the test site verification and characterization studies, efforts

were concentrated on designing the small-diameter test segment instruments and

~ the associated loading and data acquisition systems. The small-diameter pile

segment instrument was a new design of an in situ tool used previously by The
Earth Technology Corporation for a similar type test program. A new load
testing system also had to be developed which would allow precise control of
displacement during test performance. Detailed descriptions of the instruments
and test system were given in The Earth Technology Corporation's report "Tension
Pile Study, Volume II, Plan for Performing Offshore Small-Diameter Pile Segment
Tests", dated August, 1982. A summary is provided in the following sections.

3.2 Design of Pile Segment Device

Foﬁr small-diameter instrumented pile ‘segment tools were constructed for use in
the program. Each instrument is 7.62 cm (3.00 in.) in diameter. The total length
of the tool is 430 em (169.0 in.), including a thin-walled cutting shoe to simulate
an open-ended pile. Optionally, the instrument can be driven closed-end to

simulate a plugged pile.

Each instrument is capable of measuring shear transfer, displacement of the
instrument relative to the soil at test depth, total lateral pressure and pore water
pressure. A diagram of the instrument is shown on Plate 6. Photographs on
Plate 7 show the final assembly of the tools in our Houston, Texas laboratory (top
photo) and the exit point for cables awaiting final wiring of the underwater cable

connector (bottom photo).
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Shear transfer is measured by taking the difference in load on two cross-sections
of the instrument. The cross-sections are 77.6 c¢m (30.6 in.) apart, a length
chosen to give an external surface area of 0.186 sq m (2.0 sq ft) between the load
measurement points. The strain gage bridge is sensitive only to axial soil

resistance applied between the load cell locations. Common axial loads,

transverse bending loads, and temperature are seif-cancelling.

Displécement relative to the soil at test depth"is‘ measured using a DC-operated
LYDT (linear variable differential transformer). This is accomplished by designing

"~ the instrurhent so that the upper section, including the load cells, can move
- axially with respect to the lower section which includes the cutting shoe. The
“total allowable movement is 2.54 em (1.0 in.). The LVDT core is fixed to the

lower cutting shoe section; the LVDT housing is fixed to the upper instrument

section. This lower assembly is shown at the top of Plate 8.

Total lateral pressure and pore water pressure are measured at a point mid-way
between the two axial load cells. Total pressure is measured by weighing the
force exerted on a small load cell which prcjects through the wall of the pile
segment. The active face is shaped to conform to the outside surface of the tool,
thus avoiding disruptions of radial pressure near the transducer. Pore water
pressure is measured using a commercially-available diaphragm-type transducer
mounted in a cylindrical housing. The active face, located next to the total
pressure gage, is separated from the soil by a porous carborundum filter also
shaped to conform to the instrument exterior surface. A photograph of the total

pressure and pore pressure transducer housing is shown at the bottom of Plate 8.

3.3 Data Acquisition System

The data acquisition system is built around a high-level language programmable

computer system. The Digital Equipment Corporation MINC-23 computer was
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combined with FORTRAN data acquisition programs to allow real time data

collection and test control. Incoming signals are digitized by a HP-3497A scanner

- digitizer. This system can scan up to 100 channels and provide high resolution

A/D conversion of strain gage level signals without the need of analog

amplification.

Data collected is stored immediately as raw voltages on a floppy disc and printed
in engineering units on a printer. Selected variables can be displayed, at the
operator's discretion, on a digital plotter to aid in visualization. Analog plotting
of data is also performed to visually monitor test progress. Data stored on dise
are transferred to a 9-track tape at a time convenient to the test operator. This

provides a permanént, transportable record for future processing and analysis.
The entire data acquisition system is housed in a wéterproof, air-conditioned
portable building. Photographs of the interior of the building with the data
acquisition system installed are shown on Plate 9.

3.4 Equipment Calibration

Each component of the four small-diameter pile segment tools was calibrated in

- The Earth Technology Corporation's Houston laboratory prior to deployment

offshore. Total pressure transducers were calibrated from parallel measurements

of water pressure from the precalibrated pore pressure transducers. These total

~pressure calibrations were further verified with a series of dead weight loadings.

The shear transfer load cells were calibrated using a special calibration frame and
the hydraulic ram and pump system used for loading in the field tests. A diagram
of the calibration frame is shown on Plate 10; photographs taken while the load

cell calibration was in progress are shown on Plate 11.
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3.5 Loading System

b

The hydraulic loading system consists of a load frame plate, a removable upper

frame, a "through-hole" hydraulic jack, an electric pump, and associated fittings,
valves and hardware. The 1,335 l'fRfNﬂ“("iSO—ton)".ddﬁblg—acting jack has a 30.5 em

(12 in.) stroke. Electrically actuated control valves allow remote operations of

B
b

the system from the data acquisition building. This system can be controlled

either by manual switches or by computer control, at the option of the test
operator. A schematic of the testing apparatus is shown on Plate 12. More

detailed deseriptions of system operation are given in a subsequent section.

3.6 Proof Tests

The entire small-diameter pile éegment test systerﬁ was fully proof tested on land
prior to mobilization offshore. Sample test programs were performed at Sabine
5 Pass, Texas and near New Orleans, Louisiana. During these tests, all aspeets of
the equipment and equipment operation system were exercised. In addition, the

two onshore tests allowed for training of the test crew to insure optimum

vperformance during the offshore test program.
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4.0 OFFSHORE FIELD TESTING PROGRAM

4.1 General

The offshore field testing program using the small-diameter pile segment
instruments was conducted at the West Delta 58A platform during late
November and early December, 1982. A total of ten installations were made
in three separate boreholes. In all, thirty-three loading sequences were
performed. These included tests over time periods ranging from a few
minutes to 144 hours after installation. Open-ended and full displacement pile
segment tests were performed. One-directional, progressively increasing
loadings were applied as well as large displacement two-directional loadings.
This section describes the method for testing and the type of tests performed.

Following sections discuss results of the testing program.

4.2 Test Set-up

Equipment used to perform the testing’program included (1) four small-
diameter pile segment instruments; (2) the test system and related data
acquisition equipment; (3) a mobile drilling rig with pipe, drillrod and support
tools; and (4) a self-propelled, self-elevating barge which provided a crane and

also served as housing for the test personnel.

The jack-up barge was used to transport a portion of the equipment offshore.
After unloading, it was positioned alongéide the West Delta 58A platform and
was used for food, lodging, communications and other logistical needs for the
duration of the test program. '

Prior to mobilizing to the offshore platform, 32.4 em (12 3/4 in.) casing was
installed from the platform deck to a level approximately 9 m (30 ft) below
the mudline for each of the three test holes. The purpose of the casing was
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to insulate the test instruments from wave and current action. A relief hole
was drilled in the casing at approximately 3.0 m (10 ft) above the water level
in order to lower the water level in the casing from deck height to the hole
elevation, a difference of about 11.6 m (38 ft). This reduced the possibility

of hydraulie fracturing of soft soils near the seafloor.

After the casing was set and‘ cut-off at deck level, the lower load frame
plates were installed and welded to the platform (see Plates 13 and 14). Skid
beams for the drill rig were aligned parallel to the three test holes to allow

movement of the rig from one hole to another.

The drilling rig and drilling crew were provided by McClelland Engineers, Inc.
The rig was a Failing 1500 skid-mounted unit. Approximately 275 m (900 ft)
of 115 mm (4-1/2 in) IF drill pipe and the same amount of N-rod was also
provided by McClelland.

Prior to mobilizing, the N-rod (90 m for each borehole) was pre-strung with
the instrument cable to facilitate lowering and retrieving the instruments.
Special racks were constructed by The Earth Technology Corporation personnel

to aid in drill rod and cable handling (see Plate 14, lower photo).

The data acquisition building was located directly in front of the three test
holes to allow clear visual contact with the operations. Instrument cables
were routed to minimize the possibility of damage during pipe handling. A

lay-out of the test set-up is shown on Plate 15.
4.3 Instrument Installation |
The procedure used to install each instrument was identical for each borehole

and each test level. This procedure was preplanned tc make optimum use of

the time available of'fshore, The installation sequence used was essentially the

16
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same as shown pictorially in Ertec's. CNRD 13-2, Volume II report. The steps

k4 are described briefly below:
| g-; 1. Pre-check and prepare instrument and data system.
=

2. Advance boring to pre-determined depth.

3. Lower instrument with N-rod through the drill pipe until the

in§trument reaches the bottom of the test hole.
4. Assemble test frame and place hydraulic jack in position.

5. Place casing hammer and drive the smali-diameter pile segment to

the pre-calculated test depth.

6. Perform initial (as-driven) load test.

7. Allow at rest consolidation to proceed until desired time for load

test sequence.

Photographs showing preparation of the instrument and installation are shown
on Plates 16 through 19.

pom Digital data logging began just prior to instrument insertion into the drill pipe
?@ and continued, Unintefupted, until the tool was removed and on the platform
deck. Time intervals for sampling were determined by the needs of each test.
For example, during the consolidation phase, sample rates which geometrically

increased from 30 seconds to a maximum of two hours were used.

b
ek
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4.4 Testing Program

Primary testing was performed at three different depths in three separate
boreholes. A fourth level was aiso tested in the third borehole. The three
primary depths were selected to represent the three major strata identified in
the site characterization study. A chart showing the test hole number, test
type, and elevations where the various tests were performed is shown on
Plate 20.

Test Hole No. 1 was dedicated to long-term (approximately 72 hour) tests.
Hole No. 2 was used for short-term (approximately 8 hour) tests although
several long-term tests were included at the deepest depth. Test Hole No. 3
was used for a variety of tests including 1) short-term, large displacement, 2)
short-term, 'progressive one way ecycling and 3) long-term tests after
previously performed large displacement cycling. Load tests immediately
after driving were performed in all test holes at all elevations. Except for
one load-controlled test, performed in Test Hole No. 3 at 54.3 m (178 ft), all

tests were displacement controlled.

A summary of all test performed with approximate times after insertion is
shown on Plate 21. Where f,54 and fij, are both shown, full reversal of
loading direction was ineluded in the test program, thereby allowing frictional

degradation under large strain cycling.
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5.0 IN SITU TESTING CONDITIONS

5.1 Pressure Histories

Radial total pressure, op, and pore pressure, u, were measured and recorded for
each instrument from the beginning of installation until instrument recovery.
Thus, pressure changes were monitored during the quiescent periods of

consolidation as well as during the testing phases.

Plates 22 through 25 show the pore pressure histories for all instruments at the
four depths tested. These plates primarily display pore pressure versus time, on
a logarithmic scale, during non-testing periods. The time periods when testing
was in progress are shown as broken lines. Also, it should be noted that in Hole
No. 1 at the 17.7 m (58 ft) depth, the pore pressure increased for a period of

time beginning at about 2,100 minutes. It was later determined that this was

due to drilling disturbance in Hole No. 2, about 12 feet away. In all subsequent
drilling operations, no weight material was used, and such pressure increases

were not observed.

Computer plots of the pressure histories for various tests are given in the
Illustrations and Appendix sections of this report. These consist of one plot

showing total radial pressure and pore pressure versus time and one plot showing

- effective radial pressure versus time. In these graphs, time is plotted on an

arithmetic scale.

Fdci

5.2 Estimated and Measured In Situ Stress Conditions

From results of the site investigatioh ‘and subsequent laboratOry testing pro-
grams, the in situ stress conditions were estimated prior to performing the field

pile segment testing program. This estimate was shown in the site charac
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terization report and was also reproduced fer this report (see Plate 2). Pressure
information obtained from the pile segment testing program was used to revise

the previous estimated state of stress, as shown on Plate 26.

The original estimates for total and effective vertical pressures and pore water
pressure are shown as dashed lines. Measured pore pressures, u, based on the
seventy-two hour tests at the three primary test elevations, are shown as
triangles. Alsc shown are measured radial total pressures, O p, (open squares)

and radial effective pressure, 0 ', (open circles) determined from subtracting

u from oy

‘The previOuS estimates of the in situ state-of-stress were expressed in terms of

vertical stress conditions. Therefore, to compare "measured" to "estimated"

!

conditions, it was necessary to convert the measured radial pressures to

corresponding vertical pressures. This was accomplished by using the relation-

ship

it

where o '; equals o, (measured) minus u (measured) and K, equals the values
shcwn on Plate 27 derived from laboratory tests and reported in the site
characterization study. Total vertical pressure, © , could also be inferred by
adding the measured u to ¢ 'y. These new estimates of the vertical soil
preésures, oy and o'y, calculated in the manner explained are shown on Plate

26 as solid squares and circles, respectively.

The solid lines show revised estimates for in situ vertical stress conditions. As
can be seen, the original estimates for effective pressure were very close to the
revised curve through the first two strata, 0 to 48.8 m (0 to 160 ft). In the
deepest test stratum, the in situ effective stress inferred from the measured
rédial and pore pressures was higher than had been estimated previously.
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5.3 In Situ Shear Strength

The interpreted shear strength profile based oh laboratory undrainéd tests
remains unchanged from that given in the earlier report. However, the profile
based on effective stress parameters, normalized soil behavior (Ladd et al, 1977),
required change since the values for o'y, changed, as previously discussed. This
is particularly evident from 48.8 to 77.1 m (160 to 253 ft) where the estimated
in situ range of shear strength is considerably higher than that given previously.
Plate 28 shows this revised profile. These new values for shear strength will be

used in all subsequent comparisons of pile frietion and shear strength.
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6.0 RESULTS OF SMALL-SEGMENT TESTS
6.1 Test Types and Purposes

6.1.1 Types of Tests

The testing program was developed to examine soil-pile behavior during the
various phases in the "life" of a TLP foundation. The tests which were deemed
relevant to the study included the following:

Immediate (after driving) tests, Type I

Short-term, large-displacement tests, Type I
Long-term, large-displacement tests, Type I
Short-term, small-displacement tests, Type II

Progressively increasing load controlled tests, Type II

A T M R

Retests performed after full-reversed eyeling and some amount of
additional consolidation, Type II

The immediate and short- and leng-term large-displacementk tests have been
designated as Type I tests, where loading to failure was accomplished prior to
any other disturbance, with the exception of installation. The small-
displacement tests, load controlled tests, and retests have been designated
Type II tests. Subsequent paragraphs discuss the purpose of the different types
of tests.

6.1.2 Immediate Tests

Immediate (after driving) tests were performed after the installation of each
instrument at each level. The purpose of these tests was to determine the skin
friction immediately after driving. For normally consolidated soils, the
frictional capability at this period in time should be the lowest since remolding
has occurred and pore pressures are elevated due to cavity expansion during
driving. The test arrangement was such that these tests were performed within

minutes after completion of driving.
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6.1.3 Short-Term Tests

Short-term, large-displacement tests were performed at three elevations in Test
Hole No. 2 and at one elevation in Test Hole No. 3. These tests, performed
approximately eight hours after installation, were to determine maximum and
minimum values for shear transfer after an intermediate amount of consolidation
had occurred. This information, along with immediate and long-term results,
allow a curve showing increase in pile friction with time to be constructed. A
relationship of this type is important since the construction of a TLP may not
allow time for full consolidation of large—diametér piles prior to applying loads
to the foundation.

6.1.4 Long-Term Tests

Long-term, large-displacement tests were performed at three-elevations in Test
Hole No. 1. For these tests, the instrument was left undisturbed for a nominal
seventy-two hour period after installation and immediate testing. Therefore,
advanced consolidation had occurred prior to testing. The purpose of these tests

was to determine the maximum and minimum (degraded) frictional resistance

available after a time period corresponding to possibly several years after the

installation of a prototype TLP foundation pile.

6.1.5 Short-Term Small-Displacement Tests

Tests with progressively increasing displacement were performed at two
elevations in Test Hole No. 3. The purpose of these tests was to determine if
the small-displacements experienced by a TLP foundation during normal environ-
mental conditAions have an effect on the ultimate frictional capability (maximum
and minimum) which may be encountered during larger displacement cycling

from storm loading.

6.1.6 Progressively Increasing Load Controlled Tests

One short—tebm load controlled test was performed in Test Hole No. 3. This test
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test was performed using one-way tension only cyeling. The purpose was to

investigate the differences, if any, between one and two-directional cyecling.

6.1.7 Retest After Additional Consolidation

Six retests were performed in Test Hole Nos. 2 and 3. " These tests were
performed at times ranging from twenty to one hundred forty-four hours after
installation and after at least one full-displacement cyclic test had been
performed. The purpose of the tests was to investigate the "healing" effect
after soil degradation. This test simulates a pile which had at some time
in the past experienced extreme storm loading. For most of the tests, data was

also recorded during "pullout" of the instrument.

6.2 Results of Type I Tests

6.2.1 Immediate Tests

Immediate tests were performed following the installation of each instrument.
In most cases, the test began within ten minutes after completion of driving.
Each test consisted of loading the segment to failure in tension followed by one
compression cycle to failure. Each instrument was then positioned to
approximately mid-range of the displacement measuring device prior to

beginning the consolidation phase.

Results of each immediate test are given in the Appendix. These typically

consist of one or more of the following plots:

Shear Transfer versus Axial Displacement (t-z)
Total Pressure versus Axial Displacement (o - 2)

Pore Pressure versus Axial Displacement (u-z)

S LI A ¢

Effective Pressure versus Axial Displacement {g's - 2)

In all, ten immediate tests were performed. Results are tabulated on Table 1.
Shown additionally are undrained shear strengths based on laboratory tests on

undisturbed samples (see Plate 5). The ratio of the average peak friction during
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initial loading to the undrained shear strength averaged 0.76 for three of the
four depths tested. This ratio for the uppermost test depth, 17.7 m (58.0 ft),
was 0.54. ‘

6.2.2 Short-Term, Large Displacement Tests

A series of tests were performed on a pértioh of the instruments after
approximately eight hours of undisturbed consolidation. T@ansion loading to
failure followed by large-displacement cycling was conducted at 17.7, 45.1 and
63.4 m (58.0, 148.0 and 208.0 ft) in Test Hole No. 2 and at 45.1 m (148.0 ft.)
in Test Hole No. 3.

Results of these tests are shown on Table 2, together with the ratios of the
maximum and minimum values of friction to interpreted shear strength based on
the various laboratory tests on undisturbed samples (left side of Plate 5). For
both maximum and minimum friction values, the ratio f/S; increases with depth.
Selected computer plots of shear transfer, total pressure, pore pressure, and

effective pressure versus axial displacement are given in the Appendix.

6.2.3 Long-Term, Large-Displacement Tests

All three tests performed in Test Hole No. 1 were long-term, large-displacement
tests. After installation and immediate testing. each instrument was allowed to
consolidate, undisturbed, for approximately seventy-two hours. At the end of
this period, each small pile segment instrument was loaded to failure in tension
and then cycled in tension and compression until 2 minimum friction value was

obtained. This normally consisted of approximately ten cycles.

The results of these tests are shown on Table 3 along with comparisons to shear
strength such as those given for the immediate and short-term tests. The ratio,
fmax/Sus Was approximately 1.05 for the .top two strata. This ratio was much
higher, 1.60, at the deepest test level. The ratio of minimum friction to shear
strength increased with depth as in the short-term Type 1 tests. Graphie displays

for these test are also given in the Appendix.
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6.2.4 Summargl of Type I Tests

A summary of peak measured friction, fy ¢, versus depth below the seafloor for
all Type I tests is shown on Plate 29. For the immediate tests, the fihax profile
begins at zero and linearly increases through the upper two strata to
approximately 26.3 kPa (0.55 ksf) at 48.8 m (160 ft). At the beginning of
Stratum III, the rate of increase of f,5x With depth increases; the extrapolated
value for fax at the bottom of Stratum III is 35.9 kPa (0.75 ksf).

For the long-term Type I tests, the same trend appears. However, the seafloor
intercept for fy,ax is approximately 8.1 kPa (0.17 ksf). Also the rate of increase
in f;ax With depth is higher than for the immediate tests below 48.8 m (160 ft).

As would be expected, the magnitude of fmax for the short-term Type I tests
is between those measured immediately after driving and after a long period of
consolidation in Strata I and III.  However, in Stratum II, the éxtrapolated
profiles for fyax from the short-and long-term tests coincide. This indicates
that the time for complete pile "set-up" is much shorter in this stratum. Since
the soil in Stratum II has a lower plasticity and higher coefficient of

consolidation than Stratum I or III, a faster set-up period would be expected.

A comparison of estimated undrained shear strength versus peak friction from
the various Type I tests is shown on Plate 30. For Stratum I and 1I, the
magnitude of the measured friction from the long-term tests is slightly higher
than the interpreted shear strength profile from the site characterization report.
The magnitude of the measured friction from the short-term tests is slightly
lower than the interpreted curve in Stratum I and is higher, coinciding with the
long-term tests, in Stratum IL The slope of both the short and long-term fmax

curves is almost identical to that of the interpreted shear strength line.

Below 48.8 m (160.0 ft), the interpreted undrained shear strength is substantially
less than measured peak friction from both the short and long-term tests. Also,
as shown on Plate 30 in the shaded section, the range of shear strength predicted
from normalized soil behavior relafionships (Ladd et al, 1977) are also

significantly lower than the measured fpax from the long-term tests.
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Plate 31 is a reproduction of pile capacity analyses from the site charac-
terization report. However, included are results from the three long-term
Type 1 tests. It can be easily seen that the measured fgx values are
substantially higher than the unit skin friction derived from any of the currently
used pile capacity prediction methods. A comparison of maximum and minimurn
(degradéd) friction from Type I tests is shown on Plate 32. There were no
significant differences in the degraded frictional resistance which resulted from
continued large-displacement cyecling following long and short-term tests at this

site. Therefore, the minimum friction, iy, profile is a single line, as shown.

The profile originates at zero and linearly increases to 23.9 KPa (0.50 ksf) at
48.8 m (160 ft). At this point, the interface with Stratum III, the rate of change
with depth of the frictional resistance profile increases to an extrapolated value
of 95.8 kpa (2.0 ksf) at 77.1 m (253 ft). In Stratum I and Stratum II, the profile
roughly corresponds to fpax for the immediate tests. In Stratum III, fmin 18
greater than f 55 for the immediate tests. One interesting observation, though
possibly coinecidental, is that the minimum friction line follows the mean value
of shear strength predicted by the normalized soil behavior relationship, as. shown

on Plate 32A. In other words, for this location, the following equation applies:
fpin = 023 o'y ------"-----------~-- (2)

where o'y is obtained from the in situ vertical stress conditions estimated

from field measurements, as shown on Plate 26.

6.3 Results of Type II Tests

6.3.1 Short-Term Small-Displacement Tests

A short-term, small displacement test was performed at 17.7 m (58.0 ft) in Test
Hole No. 3. An immediate test was run on the instrument after installation;
undisturbed consolidation was then allowed for approximately eight hours before
testing began. Cyeling in both tension and compression was initiated by loading

in tension to a displacement of 0.127 mm (0.005 in),unloading, and reloading in
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compression to the same displacement. After about five cycles, the displace-
ment was increased by +0.127 mm (+0.005 in) to +0.254 mm (+0.010 in).

This procedure was continued until displacement reached +0.762 mm (+0.030 in),
the point at which time failure occurred. The instrument was then cycled

+1.27 mm (+0.050 in) to obtain maximum degradation of frictional resistance.

A similar test was performed at 63.4 m (208 ft), except' the load was confrolled
instead of the displacement for the first series of cycles. Afterwards,
displacement control was used similar to that employed for the test at 17.7 m
(58.0 ft). Increasing displacement intervals of +0.05 mm (+0.002 in) were used
until failure occurred as cyeling between -0.61 mm and +0.51 mm (-0.024 and
+0.020 in) was attempted. This is shown as the initial portion of the curve on
Plate A-56. At this time, cyecling continued at +1.27 mm (+0.050 in) to obtain

the minimum friction.

Both the peak and minimum friction values obtained at the 17.7 m (58.0 ft)
depth during this test were higher than those obtained from the Type I short-
term test at the corresponding depth. At 63.4 m (208.0 ft), f,54 Was lower and
fin Was higher than those recorded during the short-term Type I tests at the
same depth. Results of both short-term, small-displacement tests are given on

Table 4. Computer plots can be found in the Appendix.

6.3.2 Progressively Increasing Load Controlled Test

A one-directional load controlled test was performed at 58.4 m (178.0 ft). The

test began after an eight-hour consolidation period following the immediate test.

To begin the test, the pile segment was loaded in tension to 26.3 kPa (0.55 ksf),
which was estimated to be 50% of failure, based on the results of tests in Test
Hole No. 2. Cyeling at +5% (45 to 55%) about the tension bias was then
performed for 20 cycles. At this time the load levels were increased by +5%

to cycle between 40% and 60% of the estimated failure load.

The load range was progressively increased as follows: 30% to 70%; 20% to
80%; 14% to 86%; 5% to 95%; and -5% to 105%. At 105%, failure began to
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oceur as permanent displacement was‘obs'e’rved. " On the subsequent cycle, failure
occurred at a lower value of friction. Large-displacement, two-directional

eycling was then performed to obtain f,in.

The initial failure from one-directional tension cyeling occurred at 67.03 kPa
(1.40 ksf). On the following cycle, failure occurred at approximately 57.5 kPa
(1.20 ksf). Minimum friction, fip, from two-way ecyeling was 38.30 kPa
(0.80 ksf). Results of this test are shown on Table 4. Plots are given in the
Appendix.

'6.3.3 Retests After Additional Consolidation

At some of the test levels in Test Hole Nos. 2 and 3, the instruments were left
in place after the specified tests were completed. Additional large-displacement
tests were performed in these cases after additional time was allowed for
consolidation. Five retests were performed at the following elevations and times
after installation:

a. 45.1 m (148.0 ft) - 20 hrs; 44 hrs.
b. 54.3 m (178.0 ft) - 20 hrs.
c.  63.4 m (208.0 ft) - 70 hrs; 144 hrs.

Results of the five retests are given in Table 5, with the plots of the digital data
~in the Appendix. The results suggest that, at the 63.4 m (208.0 ft) depth, the
losses in resistance due to cyclic loading are recoverable. Partial recovery was
also observed at the shallower test depths; however, the length of time between

tests was insufficient to allow any definite conclusions to be reached.

The recovery in soil resistance with time after ecyclic Ioading will be further

explored during the upcoming offshore test program.
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7.0 ANALYSIS OF TEST DATA
7.1 General

Computer plots for various tests are shown in th'e’ Appendix. These plots show
shear transfer (pile friction), total and effective lateral pressure, and pore water
pressure as functions of displacement. During the cyelic tests, data samples
were obtained at discrete intervals of load or displacement between preset
control points. Data outside the limits, or values prior to the first interval after
reversal, were not recorded by the digital system; thus, the digital plots of data
as a function of displacement appear truncated near each control point.
Continuous analog (x-y) records of shear and displacement were taken, and will

be supplemented by the digital records in determining the t-z relationships.

The data acquisition system used for this study also allowed cross-plotting of the
primary parameters measured against each other and as a function of time. Two
very informative cross-plotting techniques used to examine the data were 1)
shear transfer and lateral pressures versus time and 2) shear transfer versus
effective pressure. The latter produced 'stress path" plots similar to those

which are constructed from triaxial and direct or simple shear test results.

7.2 Time Histories During Testing

7.2.1 Immediate Test at 63.4 m (208 ft)

A time history of shear versus elapsed time for the immediate test in Test Hole
No. 1 at 63.4 m (208 ft) is shown on Plate 33. The event (tension failure, slip,
ete.) which is ocecurring is shown on the right hand side of the page and
corresponds to the number labels on the plot. The total lateral pressure and
pore water pressure which were measured during the same period of time are
shown on Plate 34. A slight drop in total pressure is seen until initial failure
occurs. This is followed by a gradual increase in total pressure with a minor

perturbation occurring during unloading in tension.

Changes in pore pressure during the test are much more dramatic. A substantial
drop in pressure is seen at initial failure in tension. The pore pressure remains



depressed during continuous slip. Upon unloading and reloading in compression,
the pore pressure increases to near its original level, peaks at compression
failure, and then drops again during compression slip. The same pattern occurs

during the second tension cycle.

Effective pressure versus time is shown on Plate 35. Since the variations in
total pressure with time were small compared to the pore pressure changes, the
effective pressure plot is very nearly a mirror image of the pore pressure-time

diagram. It is interesting to note that the peak friction in tension occurred at

the lowest value for effective stress in the first cyele. Subsequent peaks in

compression and tension also occurred at low effective pressure values. Another

observation is that, for this immediate test, the effective stress tends to

increase during continued slip in either tension or compression with no

corresponding change in friction.

m
i

7.2.2 Long-Term Test at 63.4 m (208 ft)
kil
- Time histories for the long-term test in Test Hole No. 1 at 63.4 m (208 ft) are
~ shown on Plates 36 through 38. Nine tension-compression cycles are shown from
E«: 0 to approximately 0.70 hours of elapsed time. The remainder of the plot is the

"pull-out" of the instrument. Examination of this data reveals that after the

first two complete cyéles the results become very repeatable.

ﬁ In order to more closely examine the results, the scale was expanded to include
- only the first 0.3 hours of the test. The various events in the loading history
5’% are shown in the same manner as for the immediate tests. Shear transfer versus
i time for the first three and one-half cyecles are shown on Plate 39. The
é‘a corresponding total lateral pressure and pore water pressure is shown on
s Plate 40. After a slight increase during the first loading, the total pressure
— remains fairly constant except during unloading in tension and reloading in
w compression. The lowest total pressure occurs at "zero load" (Point No. 3), just

prior to applying a compression load.

S

As with the immediate test, the pore water pressure fluctuations are more

=

dramatic and essentially mirror the effective pressures shown on Plate 41.
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Contrary to the immediate test, the effective pressure during the long-term
test (in the same test hole at the same depth) increased during the first loading
cycle to failure. At failure and during tension slip, the effective pressure
dropped, also contrary to the immediate test. However, after the initial tension
failure in the long term test, the pressure responses were very similar to the
immediate test. That is, the effective pressure dropped during unloading in
tension and reloading in compression, reached a minimum at compression failure,
and increased during compression slip. Also, like the immediate test, during
tension eycles subsequent to the first cycle, a decrease in pressure is seen during
reloading in tension followed by a depression at tension failure and a gradual

increase in effective pressure during tension slip with no change in friction.

It must be noted that the data gathered was digital data and that the plotting
routine employed simply constructed straight lines between each consecutive
data point. Because of the sampling intervals selected, some unavoidable gap in

data occurred. Examples are shown as dashed lines in Plates 39 through 41.

Similar gaps in data ocecur in other plots of digital data, particularly in the shear
transfer-displacement curves in the Appendix where truncation occurs at the
displacement limits. However, for convenience, dashed lines were provided only

in the examples noted above.

7.2.3 Time Histories at 45.1 m (148 ft)

Time histories for Tests Hole one at 45.1 m (148 ft) are shown on Plate 42
through 47. The first three plates are for the immediate test; the last three
show the long-term Type I test. The same numbers used previously to denote

events are used in these graphs.

A comparison of effective pressure versus time for the immediate (as driven)
tests at the two different elevations and two different soils show remarkable
similarities. Both indicate a drop in effective pressure at tension failure
followed by a rise in effective pressure during slip. Also, in both cases the
pressure drops during loading in compression. At compression failure, however,

there is a difference between the soils at the two depths. Effective pressure
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is at a minimum when slip'; begihs at the 63.4 m(208 ft) depth, (Point 4), and
then increases with continued compression slip to Point 5. At the 45.1 m
(148 ft) depth, the effective pressure reaches a minimum just as failure begins
and has reached a maximum by the time fullv slip in compression has been
reached.  The pressure responses durmg the second tension cycle of both

immediate tests are 51mllar

A comparison of lateral pressures from the first long-term test tension cycles
at 45.1 m (148 ft) and 63.4 m (208 ft) shows quite a difference in pressure
response. The effective pressure at failure during the 45.1 m (148 ft) test shown

on Plate 47 was much lower than the pressure at the beginning of the test. The

same failure point (Point 1) at 63.4 m (208 ft) on Plate 41 indicated a slight

increase in effective pressure had occurred.

However, after the initial tension failure, the patterns of effective pressure
response at the two elevatlons become quite similar. In fact, the only major
difference is durmg compressmn failure where the minimum value for effective
pressure is reached as slip begins and is increasing by the time the end of slip
is achieved. This was the same difference noted in the comparison of immediate

tests at the two dépths.

7.3 ; Stress Paths
7.3.1 General

The most familiar, and likely the most meaningful, method for examining the
test data is by use of stress path plots. For these analyses, the shear transfer,
or "pile friction", is pl(y)tteﬁd against effective preSSuré; The initial point on each
diagram is the pressure at which the load test began. Then, as load is applied
the corresponding values for friction, f, and radial effective stress, ¢ r» develop

a "stress path" to failure.

Diagrams of this kind were initially pldtted using the computer, as shown on
Plate 48 for the 63.4 m (208 ft) depth in Test Hole No. 1. However, due to the
numerous data points, with many of these coinciding with each other, manual
plotting of key points only was determined to provide the clearest graphical
display.
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7.3.2 Pressure Responses From Varying Loading Patterns

Three very distinctive type loading patterns were applied to the small diameter

pile segments during the testing program. These patterns were as follows:

1. Continuous loading fo failure,
2. Small displacement (two-way) cycling, and
3. Progressively increasing load controlled (one-way) cyecling.

At the conclusion of each of these tests, large displacement ecyecling was
conducted to fully degrade the soil. Stress paths for these tests are shown on

Plates 49 through 51. In addition, the immediate (as driven) tests are shown.

The im_mediate ‘and long-term (Type I) tests performed at 63.4 m (208 ft) are
shown on Plate 49. The open triangle shows the conditions prior to beginning
the test. The solid squares indicate the peak value for friction measured during
the eycle indicated. The minimum, or residual, conditions measured at the end
of tension slip is shown as a solid circle. Note that the effective stress at the
end of slip following the ninth cyecle was higher than the effective pressure at

failure during the ninth cyecle.

Compression cycles are not shown on Plate 49. However, the second cycle
tension peak shown occurred after one complete compression cycle to failure. It
should be noted that after the first compresssion cyele, and during reloading in
tension, there was a reduction in effective stress of approximately 25% of the
effective stress during the first tension cycle to failure. Subsequent cycles

produced only small fluctuations in effective stress at failure.

Plate 50 shows the stress path produced by inecreasing small-displacement (two
way) eyelic testing. Although many cycles were performed, only conditions after
selected cyecles in the displacement ranges shown were plotted. As can be seen,
the initial effective stress, prior to testing, gradually decreased with increasing
values for displacement. Failure occurred at approximately 85% of the pre-test

consolidation pressure.
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The results of the one-way progressively increaSing load-controlled test is shown

on Plate 51. As in the previous test, only conditions during selected cycles are

shown. From this test, it appears that with only one-way slip, the initial

effective stress decreases only slightly until loads nearing failure are reached.

This test was performed at 54.3 m (178 ft) whereas the two previous tests were
at 63.4 m (208 ft). However, all three tests were in the same soil type and all

three were in Stratum III of the soil profile.

To observe the results in a more meaningful manner, the results of the three

tests were normalized with respect to their initial consolidation pressure, 0'pq.
A plot of normalized friction, f/ 6", versus normalized radial effective stress,
: 0 's/ 0'pe, is shown on Plate 52.

Based on normalized results, the peak friction for the undisturbed and one-
way load controlled tests were very close to the same. However, the peak

friction obtained from two-way small-displacement eyeling was much lower.

In fact, it was very near the values obtained after large- displacement
cyeling in all three tests.

7.3.3  Composite Stress Paths

Bedtiteie

Stress path analyses were performed for the various tests in each stratum
(See Plates 53 through 55). The purpose was to investigate the soil-pile
~ properties much in the same way triaxial stress-path data is analyzed. No
interpretations of properties were made since there were a limited number
of tests in each stratum. However, from the results produced from these
tests, similarities and trends were evident.

For most cases, there was a distinct effective pressure drop associated with

the degradation of friction from the first to second cyecle. This pressure drop

iy

& ik

would help explain the reduction in frictional capability from an effective
stress basis. However, subsequent eycling {after the second cyele), typically
shows a reduction in the measured friction with no associated reduction in
effective pressure. In fact, with continued slip, there is an increase in

effective pressure concurrent with a slight drop in measured friction.
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Construetion of failure envelopes wouldy indicate that the behavior of the soil
is not totally a function of the effective pressure acting normal to the pile
surface. There apparently is an intercept, similar to a "eohesion intercept",
which, combined with the pressure-friction angle component, accounts for

the total measured friction.

7.4 T-Z Curves

An important aspect of the program is the development of shear transfer-
displacement (t-z) curves for input into soil-pile modelling systems such as
the DRIVE 10 computer program {Matlock and Foo, 1979). Various computer
plots of t-z curves are shown in the Appendix. Two curves, for the
long-term tests at 45.1 m (148 ft) and 63.4 m (208 ft), are shown in detail
on Plates 56 and 57, respectively.

For both cases, the t-z curves become more elastie-plastic afte‘r continued
eyeling. At the 45.1 m (148 ft) level, initial failure during the first cycle
occurred at approximately 0.9 mm (0.036 in.) of displacement. At the 63.4 m
(208 ft) elevation, failure occurred at 0.46 mm (0.018 in) of movement. This
corresponds to 1.2% and 0.6% respectively, of the pile diameter of 76 mm
(3.0 in). After continued cycling, failure occurred at approximately 0.5 mm
(0.02 in), or 0.66 % of the pile diameter for both cases. Since only one pile
diameter was used for this study, the validity of constructing t-z curves with
displacement scaled to pile diameter was not investigated. However, a
comparison of the small-diameter segment test results to the large-diameter
instrumented pile test results should prove beneficial in evaluating this scale
effect.

7.5 Summary of Results

A large amount of information was gathered during the small diameter pile

“segment test program. Many correlations and comparisons are possible due

Lo

2}



to the good quality of the data taken. Some general observations from the

test program are listed below:

1.

For long and short-term load tests on previously untested pile
segments, the measured maximum friction was in all cases
greater than the undisturbed shear strengths from either the field

or laboratory soil testing program.

The minimum frietion measured after large displacement cycling
was approximately equivalent to the average undrained shear
strength estimated using SHANSEP procedures (Ladd, et al, 1977).

Large-displacement cyeling resulted in a reduction in pile friction
of 50% in Stratum I and 33% in Strata II and III from the

maximum friction on previously untested piles.

The majority of the loss in friction from 1argé—displacement

eyeling occurred in the first cycle.

In almost all cases, a significant drop in effective pressure was
observed between the first and second tension cyele to failure

(following the compression cycle to failure).

After the drop in effective pressure noted above, subsequent
eycles produced a reduction in pile friction with no further

significant change in effective pressure at failure.

After consolidation and first cycle loading to failure in tension,
subsequent cycles showed increasing effective pressure during

plastic slip with no increase in pile friction.

Load-controlled one-directional eycling resulted in the same max-
imum frictional capability as first cycle loading to failure.

Small-displacement two-way cyeling, with inereasing displacement

37
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ranges, produced a maximum friction value approximately equal

to the degraded friction from multiple eycle loading to failure.

Shear transfer-displacement (t-z) curves became elastic plastic

from large displacement cyeling.

Initial slip occurred at displacements ranging from 0.46 mm to
0.91 mm, which are equivalent to 0.6 to 1.2 percent of the pile

diameter.
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8.0 CONTINUING WORK

At the present time, work is continuing on the development of plans and
hardware for a large-diameter instrumental pile to be tested at the same

offshore site where the small-segment tests were performed.

Results from the tests reported in this document are vital to the
development of the test program for the large-diameter pile. Currently,
results from the small-diameter test are being back-fitted using the
analytical tool, the CASH program, which has been under development to
assist in explaining the pile-soil interaction phenomenon. In addition, the
test data from the sméll-diameter tests will be used as input into the DRIVE
program (Matlock and Foo, 1979) in an effort to model large-pile behavior

based on small-diameter test results.

At the conclusion of all field and laboratory work, the test results will be

used to develop design guidelines for TLP foundations in clay.
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NROD TOOL DETAIL A
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DIAGRAM OF SMALL DIAMETER PILE SEGMENT
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FINAL ASSEMBLY OF SMALL DIAMETER INSTRUMENTED
PILE SEGMENT

PILE SEGMENT ASSEMBLED AWAITING WIRING OF UNDERWATER
CABLE CONNECTOR '

FINAL ASSEMBLY OF SMALL-DIAMETER PILE SEGMENT
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LOWER ASSEMBLY SHOWING CUTTING SHOE ADAPTOR HEAD
AND DC-LVDT SLIP CONNECTION

TOTAL PRESSURE AND PORE PRESSURE TRANSDUCER HOUSING

DETAILS OF SMALL-DIAMETER PILE SEGMENT
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DATA ACQUISITION BUILDING SHOWING ANALOG AND DIGITAL
PLOTTERS WITH HIGH SPEED PRINTER

DATA ACQUISITION BUILDING SHOWING 9-TRACK TAPE DRIVE
SIGNAL CONDITIONER, CRT CONSOLE AND FLOPPY DISK DRIVE

DATA ACQUISITION BUILDING
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FINAL ADJUSTMENTS TO THE LOADING FRAME PRIOR
TO CALIBRATION

CALIBRATION OF SMALL-DIAMETER PILE
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DECK MOUNTED LOWER LOADING FRAME

DRILL RODS WITH PRE-STRUNG
INSTRUMENT CABLE

FIELD PREPARATIONS
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ATTACHING INSTRUMENT CABLES TO THE MODEL
PILE SEGMENTS

SATURATING POROUS STONE FOR PORE PRESSURE TRANSDUCER
PRIOR TO INSTALLATION OF INSTRUMENT INTO THE DRILL PIPE

FIELD PREPARATIONS
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ATTACHING PILE CUTTING SHOE

INSTALLATION OF INSTRUMENT
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DRILL ROD ASSEMBLY
WITH SLOTTED CABLE
ADAPTOR AWAITING
HAMMER FOR DRIVING
INSTRUMENT

POSITIONING CZNTERHOLE HYDRAULIC RAM AND POWER PACK

INSTALLATION OF INSTRUMENT
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LOAD TESTING

COMPLETED ASSEMBLY
READY FOR LOAD TEST

DRILLING SECOND
HOLE WHILE FIRST
PILE SEGMENT
CONSOLIDATES
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1

SUMMARY OF TESTS PERFORMED

Depth Type Hole 1 Hole 2 Hole 3
m (ft) Test finax fmin fmax fmin fmax fmin
Immediate X X X
17.7 8-hour X X X X
(58) 72-hour X X
Pull-out X X X
Immediate X X X
8-hour X X X X
45.1 20-hour X X
(148) 44-hour X X
72-hour X X
Pull-out X X X
Immediate X
54.3 8-hour X X
(178) 20-hour X X
Pull-out X
Immediate X X X
8-hour X X X
63.4 20-hour
(208) 72-hour X X X X
144-hour X
Pull-out X X X

PLATE Z1
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PENETRATION BELOW THE SEAFLOOR, FEET
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UNDRAINED SHEAR STRENGTH, KSF
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PEAK FRICTION, fax, KSF
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UNDRAINED SHEAR STRENGTH (S;) OR PEAK FRICTION (fpqax), KSF
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PILE FRICTION, KSF

0 0.5

1.0

1.5 2.0
1 |}

[SV)
(93]

0 0
\ \ ¢ fmin> Short-Term Tests 1
\ \ g fmin» Long-Term Tests —
\ \ NOTE: Solid symbols designate E" 10
\ plugged piles. =
50 N \ b
e |
Y L
. \ !
Fry 100 \\ T 30
o g
=
;% \ \ E440
= Tl B
w0 150 *bho \ - # E
__________ —_—— e —
: - e 3
= f Long-Term
25 g max:
m ~~ </ Tests
E 200 ! Tests \ \ \ R ~ Term Tests E_ 60
<a) | N O\ O ™~ { T~ =
A fmax» Immediate Testﬁk ~ =
~d =
\ o2 70
\ ~
250 N\ ~ .
__________ A S . S ———
(2531 |4 dqg
E
=
g
r-4 90
300 i 1 | ! A
0 25 50 75 100 T
KPa
COMPARISON OF MINIMUM AND MAXIMUM
FRICTION, TYPE I TESTS
-

Thae L artt Tarbrsesinne: Prnresnratinn

PLATE 32 .




UNDRAINED SHEAR STRENGTH (S,) OR MINIMUM FRICTION (fgjn). KSF
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APPENDIX

TEST RESULTS

TEST HOLE 1
TEST HOLE 2
TEST HOLE 3



TEST HOLE 1

DEPTH 1 = 17.7 meters (58 ft)

Immediate Test
Shear vs Displaycyement
Long-Term test - Type 1

“Shear vs Displacement

DEPTH 2 = 45.1 meters (148 feet)

Long-Term Test - Type I
Shear vs Displacement
Total Pressure vs Displacement
Pore Pressure vs Displacement
Effective Pressure vs Displacemerit

DEPTH 3 = 63.4 meters {208 feet)

Immediate Test
Shear vs Displacement
Total Pressure vs Displacement
Pore Pressure vs Displacement
Effective Pressure vs Displacément
Long-Term Test - Type I
Shear vs Displacement
Total Pressure vs Displacement
Pore Pressure vs Displacement

Effective Pressure vs Displacement

A-1

A-3
A-4
A-5
A-6

A-7
A-8
A-9
A-10

- A-il

A-12
A-13
A-14
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