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ABSTRACT

This paper reviews results of experiments conducted on
a  simple multi-steble  hydroelastic {galloping)
oscillator. These results show that noise may cause &
multi-stable hydroelastic system to exhibit chaotic
behavior, and that in some instances such behavior camnot
be predicted reliably unless noise effects are carefully
accounted for. We then present results of a theoretical
investigation of & simple, paradigmatic wmulti-stable
system, the Duffing-Holmes oscillator. The results of
this {nvestigation show that for the system being
considered noise promotes the occurrence of chaotic
behavior associated with Smale horseshoes. This
theoretical investigation is the first phase of an effort
to develop analytical tools for predicting reliably the
potential for chaotic behavior of actual hydroelastic
systems such as deep-water compliant platforms.

INTRODUCTION

Thompson et al. (1984) noted that experiments and
numerical studies conducted on compliant offshore
structures can reveal the possible occurrence of
unexpected types of dynamic behavior, including
deterministic chaos. Overlooking certain types of
behavior can constitute a gross design error with
possibly disastrous consequences. Such a design error led
in 1836 to the collapse by flutter of the Brighton Chain
Pier bridge. Neither this precedent nor the development
of flutter theory by Theodorsen (1935) were understood by
the bridge design community, and an identical design
error led to the well-known collapse in 1940 of the
Tacoma~Narrows bridge.

In the studies by Thompson et al. (1984) the chaotic
behavior of the system of interest occurred in a
hydroelastic system excited by periodic loads. More
recently, experiments and numerical studies performed on
a simple, paradigmatic hydroelastic system showed that
irregular behavior involving catastrophic jumps between
distinct regions of phase space could also be induced by
the noise excitation of a multi-stable system (Simiu and
Cook, 1991, 1992). It is this finding that motivated the
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present work.

Mathematically, there s an apparent distinction
between chsotic (i.e., 4Lrregular) “basin-hopping”
behavior with jumps induced by stochastic excitation or
noise (Arecchi et al., 1983), end behavior exhibiting
jumps associated with deterministic chasos (1.e., behavior
that entails the formation of Smale horseshoes and,
therefore, sensitivity to initial conditions, at least
one positive Lyspounov exponent, basins of attraction
with fractal dimenmsion, and the exiatence of a strange
attractor with fractal dimension (Guckenheimer and
Holmes, 1983)). As suggested by experimental and
numerical results (Simiu and Cook, 1992), those two types
of ©behavior can din fact be indistinguishable
phenomenologically.

In this paper we present & theoretical investigation
which shows that, for a certain class of systems and for
certain regions of parameter space, what appears to be
basin hopping caused by any given realization of a noisy
process is in fact noise-induced chaotic behavior
associated with the formation of Swale horseshoes. This
eliminates the mathematical distinction noted earlier.
Basic theory ylelds in this case necessary conditions for
the occurrence of such chaotic behavior, as well as a
useful measure of its strength as reflected, for example,
in the frequency of the jumps.

As compliant offshore structures are being envisaged
for deeper waters and can therefore be anticipated to
exhibit more complex nonlinear behavior, noise eifects
may be expected to become increasingly significant.
Indeed, numericel simulations as well as our theoretical
investigation show clearly that the effects of noise can
be crucial in determining the behavior of nonlinear
multi-stable systems. Those effects should therefore be
accounted for if a reliable prediction of dynamic
behavior is sought. Recognizing this is an important

‘first step toward the realistic modeling of bi- or multi-

stable compliant hydroelastic system behavior. Numerical
simulations and tools based on theory can provide
valuable insights into the behavior of such systems, just
as Theodorsen’s (1932) fundamental work on airfoil
flutter could have provided useful early insights into




" emphasize that, in spite of the insights

the behavior of the Tacoma Narrows bridge. However, we
they afford,
the results we obtained on the basis of existing theory
are valid for a restricted class of dynamical systems and
may not be directly extended to hydroelastic structures
such as compliant platforms. We also point out in the
paper that the numerical simulation approach has
practical limitations as well. For these reasons the work
presented in this paper should be viewed as preliminary.
Following a brief review of relevant experimental and
numerical results, we focus our attention on a class of
systems for which available theory allows the development
of useful analytical tools, and present results yielded
by those tools. We then comment on the usefulness and
limitations of the approaches discussed in the paper.

NOISE-INDUCED JUMPS IN A HYDROELASTIC SYSTEM

In this section we review briefly experimental and
numerical results obtained in the study of a galloping
system, The system consisted of two elastically
restrained and elastically coupled horizontal square bars
immersed in a uniform horizontal water flow. The upstream
faces of the two bars were contained in a vertical plane
normal to the flow velocity. Drag wires constrained the
bars to oscillate in an arc with large radius tangent to
the vertical plane (Fig. 1) — see Simiu and Cook, (1991,
1992) for details.

Any deviation of a bar from its position of equilibrium
causes self-excited 1lift (galloping) forces that result

Fig. 1. Galloping device (after Simiu and Cook, 1991),

in an increase of that deviation, that is, the position
of equilibrium is an unstable fixed point, so that for
small deviations the hydrodynamic damping inherent in the
lifr is negative. For larger deviations the hydrodynamic
damping becomes positive. This limits the amplitude of
the oscillation, which thus describes a limit cycle.

In addition to the galloping forces the bars are
subjected to forces induced by vortices shed in their
wakes. Observations showed that, for relatively 1low
reduced flow velocities, the two bars oscillate in phase,
that is, both bars move together up or down. As the
reduced velocity grows, in-phase oscillations alternate
irregularly with opposite-phase oscillations, where one
of the bars moves up while the other moves down. An
example is shown in Fig. 2, which depicts displacements
(in meters) of the top prism, and Fig. 3, which depicts
displacements of both the top and bottor prism for a 5 s

interval of Fig. 2.

Motions such as those of Figs. 2 and 3 are reminiscent
of the 1irregular alternation between different
oscillatory forms of a forced magnetoelastic beam (Moon
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Fig. 2. Observed displacement time history, upper bar.

0.030

0.015

0.000

=0.015

sl

930 940
Time (s)

Fig. 3. Observed displacements, upper and lower bar.

and Holmes, 1979) or a forced buckled column (Cook and

Simiu, 1991). The motions are irregular, and for any
given system the frequency of the alternations increases
with the flow velocity. A visual examination of the time
histories is not sufficient to reveal whether the
irregularity of the motion is due to the randomness of
the excitations or to chaoticity associated with Smale

horseshoes. For convenience we refer here to the
alternations between in-phase and  out-of-phase
oscillations depicted in Figs, 2 and 3 as irregular
Jumps.

A dependable numerical simulation of the galloping
motions of this system would in principle require the




solution of the Navier~Stokes equations. Because such a
solution would entail considerable if not insuperable
difficulties, engineers resort instead to semi-empirical
models for the hydrodynamic loads. Thus, following
Parkinson and Smith (1964), the self-excited 1lift forces
are described by nonlinear functions of the angle of
attack, with Reynolds-number dependent constant
coefficients obtained from measurements under static
conditions. This model is clearly imperfect, though for
certain applications it yields acceptable results. The
vortex-induced 1ift forces are also described
empirically, a commonly used description being given by
the so-called 1ift oscillator model — see, e.g., Simiu
and Scanlan (1986, p. 202). In addition, random forces
are acting on the bars. These are associated with flow
separation (both spanwise and at the bars’ ends),
oncoming and wake flow turbulence, and irregular flow
around ancillary parts. The modeling issue for these
random forces is difficult and, in many cases, it has not
been resolved satisfactorily to date.

Attempts to reproduce observed motions with irregular
jumps by omitting random forces from the hydrodynamic
loading model were reported in some detail by Simiu and
Cook (1992). (With the random forces absent, the
oscillator is modeled by an eighth-order autonomous
differential system.) In some isolated cases those
attempts were successful, that is, chaotic behavior was
obtained by solving the differential system numerically.
However, most simulations failed to predict reliably the
occurrence of jumps. Simulations were then attempted in

which random forces acting on the bars were included. For
simplicity this was done by assuming those forces to be:
modeled by white noise, with intensity chosen by trial
and error to yield time histories comparable to those
observed in the laboratory. Thus, whereas a hydrodynamic,
model from which random fluctuations were omitted had
neither predictive nor descriptive capabilities, a model
in which a crude representation of such fluctuations was:

included was capable of describing — though not
predicting -— the observed motions fairly adequately
(Simiu and Cook, 1991).

The results thus show, at least for certain types of
multi-stable systems,

random excitation (or noise).

EFFECT OF NOISE ON A MULTI-STABLE SYSTEM: THEORY

Motivated by the results reviewed in the preceding
section, we sought to develop a theoretical approach to
the prediction of irregular jumps in a nonlinear system.
No general theoretical approach to this problem exists.
However, for dynamical systems with a global geometry of
a type described below, Melnikov theory and the related
notion of phase space flux do provide useful theoretical
insights. Restricting ourselves to dynamical systems of
that type, we study the effects of noise on the system's
sensitivity to chaos. This is the first phase in a
planned effort to develop analytical tools applicable to
structures of interest in ocean engineering.

We now describe our model and briefly introduce some of
the fundamentals of Melnikov theory and phase space flux.

Dynamical Model

The systems we consider consist of second-order
perturbed differential equations whose unperturbed flows
include homoclinic or heteroclinic

&

that to predict motions with,
irregular jumps it is necessary to model the actual
hydrodynamic forces, including their random parts. Once'
this is done, simulations can help to assess the tendency.
of the system to experience catastrophic jumps induced by

orbits. For,
definiteness we focus our attention on a typical example:

of such a system, the Duffing-Holmes oscillator. Its
equation is

X = x - %3 + e[ycoswt + oG, — kx] 1)

where ¢ is a small number, vy, o, k and w are constants,
and

N
G, = [2/N]¥2 T cos(wst + é3) 2)
n=1
where {w,¢,;n=1,2,...,N) are independent random

variables, {w;; n=1,2,...,N} are positive and identically
distributed with density ¥, and {¢,; n=1,2,...,N} are
identically uniformly distributed over the interval
[0,2x). N is a fixed parameter of the model assumed to be
finite, though it may be arbitrarily large.

Shinozuka Nojse.

The process G defines Shinozuka noise (Shinozuka,
1971). It is uniformly bounded with zero mean and unit
variance. For large N, G is nearly Gaussian and has one-
sided spectral density 2x¥. Thus by properly choosing the
density of w,, Shinozuka noise can have any specified
spectral density. We choose Shinozuka noise over other
types of noise commonly employed in engineering
applications, for example Nyquist noise (Rice, 1954),
because it is uniformly bounded. This property is
essential for the application of Melnikov theory.

Melnikov function.

According to Melnikov theory, a necessary condition for
the occurrence of chaos in a system such as Eq. 1 is that
its generalized Melnikov function have simple zeros
(Wiggins, 1988, p. 463), (Arrowsmith and Flace, 1990, p.
174). For Eq. 1 the generalized Melnikov function has the
expression (Wiggins, 1988, p. 463):

M(t;,t;) = —=3k/4 + S(w)sin(wty+é,) + Zyy (3)
with
S(w) = (2)Y2xwsech(xw/2) %)
and
N
Zey = aN‘”zn -zlsm,,)sm(w,,:zw,) (5

From the general form of the expression for the Melnikov
function (Arrowsmith and Place, 1990) it follows
immediately that Z,, is the result of the convolution of
G(ty) with x,(~t), where

(x,(t), %,(t)) = {[2]¥2secht, -[2]}2secht tanht)

are the phase plane coordinates of the homoclinic orbit
of the unperturbed Duffing-Holmes oscillator (Wiggins,
1990, p.513). Consequently x,(-t) may be interpreted as
an impulse response function. (A similar observation can
be made for the second term in the r.h.s. of Eq. 3.)
Since the expectation of G(t;) is zero, so 1is the
expectation of Z,;. The variance of M(t,,t;) is easily
obtained by noting that the spectral density of Z,; is
equal to S%(w) times the spectral density ¥(w), since
$2(w) may be interpreted as the square of the modulus of
the transfer function corresponding to the impulse
response function x,(-t). Thus,

6 = 0* [ 53(w)¥(w)dw (6)
o=




From Eq. 5 it follows that the random variable Z, is
the sum of bounded, independent, identically distributed
terms. For large N, its distribution is therefore nearly
Caussian with zero mean and variance oj.

Flux Factor.

The average space flux is a measure of the phase space
transport that makes possible the occurrence of such e
jump (Wiggins, 1990). It reflects the strength of chaotic
behavior and, therefore, the frequency of the jumps., The
flux may be viewed as a measure of the probability that:
an orbit will cross the pseudo-separatrix that separates
regions of phase space associated with the potential
wells of the unperturbed system. As shown by BeigieJ
Leonard and Wiggins (1991), for small ¢ the average space
flux is, to first order, ¢®, where the flux factor & is
related to the Melnikov function as follows:

4
® = lim (1/21)_[»{*(5, 8, 6,)ds N

Ter o0 -T

InEq. 7 8, = t; + s (i = 1,2) and M' denotes the positive
part of the function M. It can be shown (Frey and Simiu,
1992) that, for the system defined by Eqs. 1 and 5, the
limit in Eq. 7 exists, and that for large N,

¢ = E[(oozA + B - %k/k)*] (8)

where E denotes expectation, A is the standard Gaussian
variable, B/S{(w) = b is a random variable, independent of
A, with density

1 1

£(b) = —— —— -l<b <1 9
x (1_b2)1/2 R
and g* denotes the positive part of the function g. Fori
any given spectral density of the Shinozuka noise, oz can’
be obtained from Eq. 6. Then, for any given set of values'
o, 7 and k, ® can be obtained from Eq. 8 by numerical
integration.

Equations 3 and 8 show that the excitation by noise and
the periodic excitation contribute in similar ways to the
fact that the system is chaotic. Thus, the system mayi
experience chaos characterized by a Melnikov function:
with simple zeros and given flux & owing to an excitation’
by (1) a periodic or quasiperiodic function (in the case
we examined, a harmonic function), (2) a realization of
a stochastic process, or (3) a combination of (1) and
(2). Any fundamental distinction between jumps induced by
noise and deterministic chaos is then erased; the only
difference between a harmonic and a non-periodic
excitation is that for the former the Smale horseshoes
and the strange attractor are fixed in time, whereas for
the latter chaos is associated with traveling horseshoes
and the strange attractor is time-dependent (Beigie,
Leonard and Wiggins, 1991).

Note that the spectral density of the random process
affects the flux through its presence in the expression
for the variance of the filtered noise process, ;% (see
Eq. 6). Thus, the effect of the noise excitation depends
primarily on the strength of its frequency content in
regions of the spectrum where the values of the transfer
function S(w) are large.

Example. To illustrate the relation between flux and
frequency of jumps we consider the Duffing equation with
k = 0.24, w= 1.4 and 0 = 0. A bifurcation diagram for
this system is shown in Fig. 4. We have in this case

@ = E[(4B - 3k/4)*). ' “o)

The flux increases with the excitation amplitude ¢, as
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Fig. 4. Bifurcation Diagram (x versus 7).

expected, Figure 5 shows time histories of the
displacement x for four values of vy to which there
correspond chaotic motions with snapthrough (jumps).
(Figures 4 and 5 were obtained by using INSITE computer
programs, see Parker and Chua (1989)).

VIR TR RREEN REE

-2.00a
(a) ¥ = 0.400

SR A A T )
- g Y WY WTWY | We
(b) v = 0.425

2.000 'llll

CTURL L A W M)
o BT VY W T T

(c) v = 0.450

AR 'MM'A w(mrwmrm
WWH VT 4w

4 850 C 3?5 9 590

(d) v = 0.475

2.000 T T

Figure 5. Time histories of displacement x.

Table 1 shows, for each value of ¥, the estimated mean
escape time (time between successive jumps) in
nondimensional units (based on a time interval T =

20,000)., and the ratio &(y)/®(y=0.40), which was
estimated numerically.
Table 1. Mean Escape Times and Ratios ®$()/®(y=0.400)
¥ Mean Escape Time Ratio &(y)/®(y=0.400)
0.400 120 1.000
0.425 55 1.062
0.450 35 1.126
0.475 28 1.187



DISCUSSION
goret \'d ()

The theoretical investigation of the previous section
answers the question raised by Bulsara et al. (1991)
whether noise raises or lowers the threshold for the
occurrence of chaos in a system whose unperturbed
counterpart has a homoclinic orbit. Whereas these authors
concluded that noise raises that threshold, that is, that
the addition of noise makes it harder for chaos to occur,

we have shown that the opposite is the case. (For a

comment on the flaw in Bulsara et al. (1991) that led to
that erroneous conclusion, see Simiu et al. (1991). Ve
note also that the treatment of and the conclusions for
the homoclinic and heteroclinic cases are similar). In
addition, we have shown that deterministic chaos with
given strength can occur under excitation by (1) a
harmonic or quasiperiodic function, (2) a realization of
a random process, or (3) a combination of (1) and (2). In
the latter two cases the irregularity of the response
and, in particular, the irregular occurrence of jumps,
can be due to the development under the total excitation
of a chaotic condition associated with traveling Smale
horseshoes, rather than to just the irregularity of the
excitation. Finally, we have shown that the spectral
density of the noise can have an important role in
determining the behavior of the system.

For the class of systems considered, the necessary
condition for the occurrence of chaos is related to the

behavior of the Melnikov function, and the magnitude of .

the phase space transport across a pseudo—separatrix (and
therefore the systems's susceptibility to the occurrence
of jumps) is related to the flux factor function. Those
functions are helpful indicators even in the absence of
information on the configuration of the basins of
attraction and the attractors in phase space. Recent
fundamental studies deal explicitly with the relation
between basins of attraction and susceptibility to noise
effects, see, e.g., Thompson (1989), Soliman and Thompson
(1989), Lansbury and Thompson (1990), and Thompson and
Soliman (1991).

It should be emphasized that the indicators in question
are based on the assumption that, in Eq. 1, ¢ is small.
For this reason the Melnikov function criterion provides
only a necessary condition, and the flux calculations can
only be viewed as very rough approximations. To obtain
closer estimates of the flux lengthy numerical
calculations would be needed, as described in some detail
by Beigie, Leonard and Wiggins (1991).

Even with these limitations, the applicability of the
theoretical approach presented is restricted to the
narrow class of dynamical systems defined in the
preceding section. In particular, the approach is not
applicable to complex structures such as compliant
offshore platforms. Intuitively, one might surmise that
the findings reported here on the role of noise could
provide useful qualitative insights applicable to systems
other than those dealt with in the preceding section. The
extent to which this is the case remains to be
established, however.

umerica oa

At this time numerical simulations are the only available
method for investigating the behavior of actual, complex
nonlinear structures under excitation by noise. As noted
earlier, the susceptibility of a system to the occurrence
of undesirable jumps depends on the configuration of the
basins of attraction and the attractors in phase space.
The proximity of an attractor to a separatrix increases
the susceptibility of a system to noise effects — see,
e.g., Soliman and Thomson (1989).

Depicting that configuration can be a prohibitive task
even in a deliberately simple system such as the
galloping oscillator studied by Simiu and Cook (1991,
1992), for which the dimension of the phase space is
eight. For an actual offshore structure the difficulties
would be even greater. For this reason numerical
simulations may be viewed as a practical, though not
fool-proof means of exploring the susceptibility of the
syster to various types of noise.

A sufficiently large set of initial conditions should
be used to minimize the possibility that an attractor of
potential significance is missed. An additional practical
difficulty can be the lack of information on the spectral
density of the random excitation acting on a structure
whose fluid dynamic characteristics are not known in
detail. Given the potential significance of the noise
spectrum, as revealed by theory in the case dealt with
earlier, the analyst would be well advised to perform
numerical experiments using white noise with various
spectral densities.

CONCLUSIONS

Results of experiments and numerical simulations
reviewed in this paper suggest that motions with noise-
induced jumps can be indistinguishable wvisually from
deterministic chaotic motions. Those results motivated
the theoretical investigation of a simple, bi-stable
dynamical system with noise excitation. The
investigation showed that the two types of motion can in
fact belong to the same class not only
phenomenologically, but mathematically as well, that is,
the motions with noise-—induced jumps were shown to be
chaotic motions associated with the formation of Smale
horse~shoes. A consequence of this finding is that, for
one-degree of freedom systems whose unperturbed
counterparts have homoclinic or heteroclinic orbits,
noise decreases the threshold at which chaotic behavior
associated with Smale horseshoes occurs. Finally, it has
been shown that the spectral density of the noise
excitation can play an important role in determining the
system behavior.

The applicability of the results of our theoretical
investigation is restricted. Whether the insights they
afford on the role of noise can be extended to other
types of systems remains to be established.

There are difficulties associated with the numerical
exploration of the susceptibility to noise—induced jumps
of complex nonlinear structural systems such as deep—
water compliant platforms. These difficulties include the
need to consider a wide range of sets of initial
conditions so that no significant attractors be missed,
and the possible lack of information on the spectral
characteristics of the noise.
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