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1« INTRODUCTION

1.1 Broiegt Purpose

Pressuremeter tests offer an array of advantages over
present day methods employed in the design of laterally
loaded piles, The pressuremeter method allows for the
design of piles btased on a3 series of P-y curves developed
from point-by=-point irn=-situ measurements, rather than curves
derived from cne or two measured parameters, The pressure-
meter 13 a versatile instrument and can be employed in
virtually any soil type including those for which there are
no existing recommendations for the derivation of P-y
curves, The pressuremeter allows for direct modeling of the
pile installation method: pre-bored pressuremeter tests for
drilled shafts and driven pressuremeter tests for driven
piles. The pressuremeter is also capable of simulating the
expected pile loading conditions: sustained pressure incre-
ment tests, unload-reload cyclic tests, and rapid inflation
tests yleld siteespecific s0il responses to creep loading,
cyclic loading, and dynamic loading respectively.

These advantages over existing methods prompted this
project. The chief objective was to incorporate cyclic
loading effects into the derivation of P-y curves obtained
from pressuremeter tests in order to predict the response of

Piles in sand subjected to eyelic lateral loading.




1.2 Proiect ADpreach

The approach employed toward this end included three
Separate phases, Existing data on cyclic laterally loaded
pile tests ipn sands were analyzed in the first phase. In
the second phase, predictions were made of the cyclic res-
ponse of the 10.75 inch pipe pile load tested by Morrison
and Reese (1986) at the University of Houston Foundatiorn
Test Facility sand site. These predictions were prepared
using previously performed pressuremeter test results
together with a degradation model selected in phase one.
The predictions were then compared to the results measured
during the full-scale cyclic lateral load tests performed by
Morrison and Reese (1986). The third phase of the project
consisted of a series of model pile cyclic load tests ccon-
ducted in the Texas A&M University laboratories and of a
similar series of cone pressuremeter tests. The degradation
model was again employed to predict the cycl;e responses of
the model piles; the results were compared to the measured

responses.




2. ANALYSIS OF EXISTING DATA

2.1 Data Base for Cyelic Laterally Loaded Blles ip Sand

By surveying the available literature, 16 pile load
tests where piles had been Subjected to cyclic horizontal
loads were found. These 16 tests were performed in 5 dif=-
ferent studies: 2 in dense sand, 2 1in dense sand and gravel,
and 1 in sandy clay loam. The list of load tests is pre-
sented in Table 1. The essential data from each load test
may be found in Appendix A. The data base included sands
with SPT blowcounts ranging from 10 to 40. The test piles
varied from 1 to 4 feet in diameter with lengths varying
from 16.5 to 73 feet, The number of cycles performed at any
given load level ranged from 25 to 100. The data btase
included both onee-way and two-way cyelice tests.
2.2 Degradation Mgdel

Using the horizontal load versus horizontal displace-~
ment curves at the top of the Piles, a secant stiffness,
Ks(N), was defined for the Nth cycle at each cyeclic level
(Flgure 1). This secant stiffness is a function of the
cycle number. The following model was used to fit the
evolution of the secant stiffness with increasing number of

eycles:

M = N—% (1)

Ks( 1)
This model is credited to Idriss, et al, (1978) and has been

used with success by several authors including Riggins
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b

1 10 100 1000
Cycle Number, N

1
—

Figure 1. Cyclic Parameters Definitiom (After Makarim and Briaud,
1986).




(1981) for cyclic simple shear tests, Briaud and Felio
(1985) for cyclic verti:zal loads on piles, and Makarim and
Briaud (1986) for cyclic lateral loads on piles in clay.
The exponent z is an indiéation of how rapidly the stiffness
of the pile-so£l assembly qecreaaes under c¢yclic loading and
i3 called the cyclic degradation parameter. An increase in
the magnitude of 3 means an incerease in the rate at which
the secant stiffness Ks(N) decreases with increasing numbers
of cyecles. The values of a in equation (1) were back-
calculated for each locad level of each lateral load test in
the pile dat# base.
2.% Besults of Data Analvais

The cyclic degradation parameters from the data base
are plotted in Figure 2 against the relative displacement cf
the pile head corresponding to the peak pressure of each
cyclié series, From the cocllected data, it c¢an e observed
that for sand:

(1) The degradation parameters varied from O0.01 to
0.27, had an average of (.072 and a standard devia=-
tion of 0.056,

(2) The trend indicates less degradation at higher
load levels within a given load test (a de=-
creases with incereasing y/R values).

(3) Degradation appears to be greater for pili:s su.-
jJected to cone-way cyclic loading than for piles

subjected to two=way cyeclic loading.
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The last observation i3 different from findings in a
similar data base analysis performed for piles subjected to
eyelic lateral loads in clays (Makarim and Briaud, 1986)
where very little difference existed between one-way and
two-way cycllie loading.

A possible explanation for this difference is as fol-
lows: In the case of two~way c¢yclic horizontal lcad tests
in sand, a gap forms behind the pile upon reversal of the
load. Because the sand has little cohesicen, the s3and falls
into the gap. When the pile is loaded back in the first
direction the deflection is decreased compared to the case
where the gap would not have been filled. In the one-way
horizontal load tests in sand, the gap does not open and
therefore larger deflections upon reloading can be expected.
This explains why the two-way horizontal cyeling of piles in
sand leads to little degradation while one-way cycling of
piles in sand leads to significant degradation. In c¢clays,
for two=-way cyclice horizontal loading, the gap doces rnot
collapse and therefore the two-way cycling is equivalent to
w0 one=way cyclic tests, one on each 3ide, This explains
why there is very little difference between one-way and two=-

way c¢yclic horizontal loading of piles in clay.
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Figure 6. Test Site Stratigraphy (from Ochoa and C'Neill,
1986).
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and cone penetration tests were performed at the site, The
locations of these tests are shown in Figure 7. The SPT
blowcounts with respect to depth in Figure 8 and the CPT
results in Figure 9 are from the test locations farthest
from the piles.-These Wwere presumed to be the closest to the
conditions prior to the load tests.

3.3 Iwe-way Displacemept-control Tests on the Single Pile

The 10.75 inch singlekpipe plle was tested uander
lateral cyeclic loading in the fall of 1984, A 4000 1lb. load
was ipitially applied to the pile, forcing it to deflect
away from the reaction pile. This was the first direction
of loading. The deflection was then noted and a reverse
load applied to the pile of sufficient magnitude to deflect
the pile toward the reaction pile a distance equal to the
deflection noted in the first direction of loading. Subse-
quent cycling was performed between these two deflections.
A 15-3econd pericd was used for the cycles, After the
desired number of cycles were completed, the pile was locaded
in the firast direction of loading up to the next desired
lcad level for displacemente-control cycling.

The resulting horizontal lateral lo¢ad versus horizontal
deflection curve is presented in Figure 10, The lcad=deflec~
tion history of the pile head is depicted in Figures 171 and
12. Instrumentaticn along the outside face of the pile
allowed for the measuring of the bending moment in the pile

with depth, exemplified in Figure 13. From this data, the
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30il resistance was generated through double integration of
a polynomial funmction fitted to the measured bending moments
using the least squares method (Morrison and Reese, 1986).
The results are presented as P-y curves in Figures 14, 15,
and 16.

Significant local densification of the sand surrcunding
the pile was evidenced by the formation of a funnel~-shaped
depression around the pile during “he cyclilc testing. At
the conclusion of the 20 kip cyeling series, the depression
measured 9 inches in depth and had a radius of approximately
30 inches (Morrison and Reese, 1986).

3.4 Degradation Model Resulta

The resulting a versus y/R (%) values for the 10.75
inch single pile tests are plotted in Figure 17, The
results agree with the cobservation made during the data base
analysis that degradation in two-way cyelle tests in sand
may be negligible., The average 3 in these two=-way tests was
0.02. During some cycles the soil-pile response actually
showed an increazse 1in resistance to displacement with
increased cycling (negative 3).

The load tests did not display a marked decrease in the
degradation parameter with increasing y/R (%). The degra-
dation remained fairly comstant with variations in the dis-
placement ievel and with increasing cycles after the initial

few cycecles,
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4, MODEL PILE LOAD TESTS AT THE

TEXAS A4M UNIVERSITY LABCERATORIES

4.1 Model Pile Load Test Apparatus

All of the model pile cyclic lateral load tests conduc-
ted at the Texas A&M University Laboratories used the same
model pile and test drum. The model pile was a solid steel
rod 1.361 inches in diameter. The test drum had an inside
diameter of 22.38 inches (16.44 model pile diameters). 1In
the drum, the soil depth was approximately 33 inches (Figure
18).

The equipment for conducting the model pile load tests
was initially coanstructed to perform only one-way load-
control tests (Figures 19 and 20). This setup allowed for
lateral step loading of the model pile by placing dead loads
on a hanger attached to the pile by a cable-pulley systen.
Horizontal displacements were measured with a dial gage
aligned parallel with the axis of lcading and affixed on the
side of the drum opposite to the cable~pulley system. A
floor jack elevated the dead locad weights during unload por-
tions of the c¢yelic loading, rellieving the cable tension and
removing the lateral load on the model pile (Figure 21),

The apparatus was later modified to allow the model
pile to be tested under one-way displacement-control, two-
way load=control, and two-way displacement-control tests

(Figure 22). The ipatalled pilile was attached through a
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Figure 19, Schematic of Model Pile LLoad Teat Apparatus for
One-way, Load-control, Cycelic Tests: 1. Test
Prum, 2. Displacement Dial Gauge, 3. Model
Pile, 4, Bearing Plate for Displacement Dial
Gauge, 5. Loading Cable, 6. Pulley, T. Dead
Locad Hanger, 8. Dead Load Weight, 9. Floor Jack.
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Figure 20. Mocdel Pile Load Test Apparatus for
One-way, Load=control, Cyclic Testa.

Figure 21, Unloading the Model Pile in a Cne~way,
Lead=control, Cyeclic Test Series,




i

Figure 22. Schematic of Model Pile Load Test Apparatus for

One-way, Displacement-control and Twoeway Cyeclic
Tests: 1, Test Drum, 2. Lubricated Screw=-3Shaf:
Bearing, 3. Screw Shaft, 4, Proving Ring Car-
riage, 5. Proving Ring, 6. Model Pile, 7.
Proving Ring-to-Pile Connector, 8. Bearing Plate
for Displacement Dial Gauge, 9. Displacement
Dial Gauge, 10. Screw=Shaft Wheel for Carriage
Travel.
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proving ring to a carriage riding on a screw shaft. The
pile-proving ring connectlion was designed such that the
moment in the plane of lateral loading would be negligible
at small displacements (FPigures 23 and 24). Loads were
measured with the proving ring, which had been calibrated
for botk tenaion and compression to allow for two=way
loading. Displacements were measured with a dial gage con-
nected to the drum and aligned with the axis of loading.
Loads were applied during the load=-control tests by turning
the screw sharft untii the proving ripg reading corresponded
with the chosen load. Displacements were similarly applied
during displacement-control tests by turning the serew shaft
until the reading on the dial gage indicated the desired
horizontal displacement, The screw shaft and bazse along
which the carriage traveled were lubricated before each test
to minimize friection, rendering any induced tranaverse loads
negligible when compared to the horizontal load along the
longitudinal axis of lcading. |
4.2 Soil Copdikiops apnd Pile Placement Procedures

To investiga?e variations in pile response due Lo
installation method and scll conditions, three separate
model pile placement procedures were tasted:

(1) the post-compacted, single lift procedure,

(2) the pre-compacted, single lift procedure, and

(3) the post-compacted, multiple lift procedure.

The first procedure was chosen as a model of a bored pile




33

Figure 23. Model FPile Locad Test Apparatus for COne-way,
Displacement-control and Two-way Cyclic Tests,

Figure 24, Pile-to-proving ring Coonection and Dilal
Gages on Two=way Cycliec Test Apparatus.
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with little soil disturbance. The drum was filled with
loose sand apd the pile pusbhed to the desired depth., The
2and was then compacted in a single 1ift around the pile
with a concrete vibrator, repeating the pattern in Figure
25a twice, peneﬁrating fully, and the pattern in Figure 25h
once, penetrating te¢ half of the socil depth. The second
procedure modeled the conditions of a driven pile. After
completing a pile test from the first procedure, the pile
was removed and the sand reccocmpacted using the pattern in
Figure 25b penetrating fully into the drum (Figure 26)., The
model pile was then driven into the sand with a rawhide
mallet until the desired depth was achieved (Figure 27).
The third procedure simulated the installation conditions of
the 10.75 inch pile tested by Morrison and Reese (1986) at
the University of Houston sand site. The model pile was
first placed in the empty drum and sand was added in six
lifts, each compacted around the pile indeperiently, and
each approximately six inches thick. Compaction was
achieved by repetitively plunging the concrete vibrator into
the 1ift beginning near the model pile and.spiralling out=-
ward toward the drum perimeter (Figures 25¢ and 28).

The weight and the volume of the sand in the drum were
measured for each type of pile placement procedure. The
resulting unit weights, presented in Table 2, indicated a
slight increaﬁe in the average density of the sand for the

post=-compaction, multiple lift procedure cover the post-
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Figure 25, Compaction Patterns for Model Pile Load Test Sand.
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Figure 26. Pre-compacting the Sand with the Vibrating Rod.

Figure 27. Driving the Model Pile to Test Depth.




Figure 28. P?xst-compacting Sand in Multiple Lifts.
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Figure 29. Cone of Depression Around Driven Model
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Soil Conditions Average Unit Weight
and Placement
Procedure (lbs/ft3)

st e }

Post-compacted 111.2

Single Lift

Pre-compacted

Single Lift 114.4

Driven Pile

Post=-compacted 111.7
Multiple Lifts

Table 2. Unit Weights of the Various Soil Preparations at
the Texas A&M University Laboratories.
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compaction, single 1ift procedure. With the driven pile,
significant compaction occurred in the immediate vicinity of
the pile during pile driving.' This was evidenced not only
by the higher unit weight, but also by a cone of depression
that appeared around the pile during insertion (Figure 29),
After driving, this depression was generally about eight
inches in diameter and one and one~half inches deep.

The s8c0il for all of the tesats was a poorly graded
medium sand with little or noe fines (Figure 30). The
average nmcisture content for the tests was 0.03% and was
constant with depth. The angle of internal friction of the
sand at a unit weight of 110 pounds per cubic foot was
85,59,

4.3 Qpne-wavy Load-control Taests

One=way locad=ccntrol tests were performed for each
pPlacement procedure with the apparatus pictured in Figure
20, The pile was 1in a free-head condition. Loading incre=-
ments of 4 kg (8.8 lbs.) were applied and pile displacement
readings taken 30 seccnds after each locad application.
Therefore, the period of cycles was one minute. Twenty
cycles were conducted at three different peak locad levels.
The resulting lateral load versus horizontal displacement
curves are presepted in Figures 31, 32, and 33.

4.4 Qpne-way Displacement-control JIests
The new apparatus employed in the one«way displacement-

control tests and the two=-way tests allowed for a quicker




40

Clay

Siit

Sand

Fine

Coarse to
medium

- 000

100

—— 95100

|
g g
g 2
[T
|
i

1o
-051'0

—0F ON -F=——

=2 1-02r 0

U.S. standard sieve sizes

——=3- 0¥80

01 ©oN

;
!

Gravei

voN . —

— = =—Si'¥

pe——

6l

100

8 g

190U} Juedied

Grain diametar, mm

Grain S8ize Distridbution of Model Plile Test Sand.

Pigure 30.




41

TEXAS A&M UNIVERSITY LABORATORIES
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TEXAS A&M UNIVERSITY LABORATCRIES
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Figure 32, Lateral Load versus Horizontal Di:placemen't of
Pile Head for One-way, Load-control Test: Pre-
compacted, Single Lift, Pile Placement Procedure.
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Figure 33. Lateral Load versus Horizontal Displacement ofk
Pile Head for One-way,lLoad-control Test: Post=-
compacted, Multiple Lift, Pile Placement Frocedure.
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application of specified displacements or loads., The period
of cycles was 40 seconds. Load readings were taken every 20
seconds following the forced displacements, which were
applied in 0.005 inch inerements. The pile was in a free=
head condition. Twenty c¢ycles were conducted at each of
three displacements levels: 0.040 inches, 0,080 inches, and
0.125 4inches, which corresponded to relative displacements
(y/R) of 5.9%, 11.8%, and 18.4%. The bottom of each cycle
corresponded to that diaplacement where the lateral load
returned to zero (Figure 34). The lateral load versus
horizontal displacement curves are presented in Figures 35,
36, and 37.
4.5 Iwo-way Load-coptrol Tests

The two-way locadecontrol tests were conducted by
applying loads in 5 1b. increments every 20 seconds in one
direction until the desired lcad level for cycling was
reached. The same load was then applied in thes opposits
direction and a reading of the corresponding displacement
was made. The lcad was then applied in the original direc-
tion, completing the cycle. The pericd of cycles was 40
seconds and the pile was in a free-head coadition. The
resulting lateral load versus horizontal displacement curves
are presented in Figures 38, 39, and 40.
4.6 Ino-way Displacemept-coptrol Tests

The two=way displacement-control tests were conducted

by forcing incremental displacements of 0.005 inchea every
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Figure 35. Lateral Load versus Borizootal Displacement of
Pile Head for One-way, Displacement=-control Test:
Post-compacted, Single Lift, Pile Placement

Procedure,




47

TEXAS A&M UNIVERSITY LABORATORIES

as' LA SN S I T LA A § i T T 12 T l. P — l p—— r »
3 MEASURED RESULTS FOR MODEL b
L PILE CYCLIC LATERAL LOAD TESTS J
" [TEST CYCLING INSERTICH 1
| NO.{DIRECTICON {CONTROL METEOQD ]
3 288 - 5 l=way Disp. Pre-comp., 1=1ift [
: -y
g ]
< 159 -
& -
[ ™
108 -
u —
E
' a2 a 2 g l 2 g " - l 3 U l_ N S W W 1 l 3 [y 3 2 L e Py '
[ ] U5 . | .18 .2 . 2% .3

TOP MORIZONTAL DISPLACEMENT (in)

Figure 36. Lateral Load versus Horizontal Displacement of
Pile Head for QOne-way, Displacepment=-control Test:
Pre~compacted, Single Lift, Pile Placement
Procedure,




48

TEXAS A&M UNIVERSITY LABORATORIES
m Ll LI La [ Ll ¥ T L l ¥ L Lal l L L o L] I T L " LI 4 L

MEASURED RESULTS FOR MODEL
PILE CYCLIC LATERAL LOAD TESTS

™y rvr o ry

TEST CYCLING INSERTION
NO, [DIRECTION [CONTROL METHOD
2".' 6 l=way Disp. Post-comp., 6=1ifts

-

-
"""'I""II'I’"""I""l".'.""

TOP LATERAL LOAD (lbed

lAl.ll.lljllllllllll.ll]lll_l_lll_l__llllljl_[llllll.llllll

. LLL!'Llll'lllllllllllLlLlllll

' . .x 013 -2 .a
TOP HORIZONTAL OISPUACEMENT (in)

w

Figure 37. Lateral Load versus Borizontal Displacement of
Pile Head for One-way, Displacement-control Test:
Post~compacted, Multiple Lift, Pile Placement
Procedure.
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Figure 38, Lateral Load versus Horizontal Displacement of
Pile Head for Two=way, Load=-control Test: Post-
compacted, Single Lift, Pile Placement Procedure.
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Figure 39, Lateral Load versus Horizontal Displacement of
Pile Head for Twoe=way, Load=control Test: Pre-
compacted, Single Lift, Pile Flacement Procedure,
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Figure 40, Lateral Load versus Horizontal Displacement of
Pile Head for Twoe~way, Load-control Test: Post=
compacted, Multiple Lift, Pile Placemen-tProcedure,
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20 seconds in one direction until the desired displacement
level for cycling was achieved. Apn increasing load was then
applied in the opposite direction until the same magnitude
of displacement was reached i{n the opposite direction of
travel, Readings of load and negative deflection were
recorded after the 20-second interval, and an increasing
lcad was then reapplied to the pile in the original direc-
tion until the displacement recorded during the first
loading was matched, completing the first cycle. The period
of cycles was 40 seconds and the pile was in a free-head
condition. The lateral load versus horizontal displacement
curves resulting from this test series are shown in Figures
41, 42, and 43,
4.7 Model Pile Mongtonic Response Envelopes

A compariscnon of the monotonic response envelopes of the
one=way mocdel pile load tests reveals a softer response for
the model piles subjected to displacement-contrel loading
than for the model piles subjected to load-control loading
(Figure 44), This variation is primarily a reflection of
the difference in the elevations at which the loads were
applied. The apparatus for the one~way load=-control model
pile test (Figure 19) applied the lateral loads at approxi-
mately 5 icches above the sand surface. The apparatus for
the one=way displécenent-control model pile test (Figure 22)
applied the lateral loads at anm elevation of approximately

190 inches, The elevation at which the deflections were
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Figure 41, Lateral Load versus Horizontal Displacement of
Pile Head for Two-way, Displacement-control Test:
Post=-compacted, Single Lift, Pile Placement

Frocedure,
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measured was approximately 5 inches for both series of
testas,

Both two=-way cyclic test series were conducted using
the second apparatus (Figure 22)., As a result, the loads
were applied at essentially the same elevation for both of
the two=way cycelice lcocading series, The range of nmonotonic
response envelopes of the load=control and the displacement-
control two-way cyclic tests generally coincide (Figure 45).

Within each test series the model pile driven into pre-
coppacted sand genefally had the softest monctonic response
at low load levels and the stiffest response at high load
levels (Pigures 44 and 45), This suggests that driving the
model pile densified the sand in the test drum, resulting in
a bigher ultimate aoll/pile stiffness; however, the driving
of the plle was not completely straight causing an ipitially
weaker response, Al 3o within eacﬁ series, the post-com-
pacted multiple-l1lift insertion method resulted in a stiffer
response than the post-compacted single-lift insertion
method (Figures 44 and 45). This may be attributed to the
higher density reached when compacting the sand in multiple
l1ifts (Table 2).

4.8 Degradation Model Results and Discussion

The percent loss of pile-scil stiffnpess with increasing
nunbers of load cycles is calculated from the cyclic pile
response envelopes as depicted in Figure 46. The percent

losses measured at deflections of 0.023 inches and 0.10
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Figure 46, Determination of Percent Loss of Soil-pile
Response with Increasing Cycle Number.
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inches (approximately 2% and 8% of the model pile diameter)
after 20 load cycles are presented in Table 3, Also, the
back-calculated 3 values from the model pile tests are
plotted in Figure 47.

The results agree with the observation made during the
pile data base ahalysi: that, in sand, one-way cycling
results in greater degradation than two-way cyeling., Degra-
dation was minor and in some cases negative (strengthening
of the soil) for the two-way c¢yelic tests (Table 3 and
Figure 47). The average percent loss after 20 cycles in the
first-lcad direction of the two=way cyclic tests was =11%
(Table 3). For the one-way cyclic tests, on the other hand,
significant degradation developed (Figure 47), and the
average percent loss after 20 cycles was 17% (Table 3.

As with the single pile at the University of Houston
sand site, after the initial few cycles, the degradation
parameter 3 remained fairly constant with increasing cycle
numbers, Also, the rate of degradation of the model pile-
soil stiffness response (a) tended to increase slightly with
increasing displacement levels (y/R (%) in Figure 47).

The results also indicate that the stiffness degrada-
tion of piles subjected to one-way displacement=-control
cyeling is generally greater than the stiffness degradation
of piles subjected to one~way load-control loading (Table
3). The average percent loss was 19% after 20 one-way

displacement-control cycles, but was only 16% after 20 one
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way load-control cycles (Table 3). This variation may be
partially attributed to the difference in the extent of the
zone of s0il 4influenced during these two different pile'
loading methodas, In displacement=-control eyelic tests, the
Zzone of influence remains essentially limited after the
initial few cycles since the maximum pile travel 1s held
constant., Continued cyecling, therefore, continues to weaken
the.same soll zone., Load~control cyelic tests, on the other
hand, do mot limit the pile travel. .As the initially
affected s0il zone weakens, the pile deflects further on
Successive cycles, enlarging the zone of so0il influenced.
New soil, as yet unaffected by previous cycles (and, there-
fore, not yet weakened) is thus continually encountered.
This variation in the zones of influence may also help
to explain why the two-way displacement-control eyelic load
testa Eesulted in greater soil strengthening than the two-
way load-control cyelic load tests. The two-way displace-
mente-control tests averaged a percent gain in pile=scil
stiffness of 19% (a negative percent loss in Table 3). The
two-way load-control tests gained an average of 0%, Con-
tinued cyecling during a displacement-control test may
increasingly densify the same soil zone; whereas, during a
load=control test, some of the energy from each cycle is
expended to enlarge the zone of influence. AsS a result, ;he
zone influenced during the displacement-control tests

develops a higher degree of densification than the larger
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zone irfluenced during the load=-control testa.

The model pile tests were conducted in dry sand and the
influence of the degree of saturation was not directly
investigated. The dry sand model pile tests under two-way
cyelic loading definitely showed a tendency for stiffer
response with increasing cycles at low displacement levels,
This phenomenon was not observed in the fullescale pile lead
test at the University of Houston Foundation Test Facility,
where the sand was fully saturated. The cyclice degradation
parameter back-calculated from the 10.75 inch pile generally
remained above zero. The effect of sand saturation on
eyclic lateral loading of piles needs to be more fully

explored.
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5. PRESSUREMETER EQUIPMENT AND TEST PROCEDURES

5.1 The TEXAM Pressuremeter Equipment

The TEXAM pressuremeter test equipment was developed at
Texas A&M University between 1980 and 1983 and is now sold
commercially by ROCTEST. It 1s composed of a portable
control unit and a probe with a single inflatable cell
(Figure 48). The control unit houses a fluid storage zank
connected to the probe by very high strength tubing. The
tubing has an 8 mm outside diameter and experiences negli-
gible volume expansion under pressure (0.02 cm3/k3/cm2 per
linear meter of tubing).

Pressure is developed in the system through the use of
a pistop=cylinder assembly within the control unit. A screw
Jack i3 employed to advance the piston, forcing fluid from
the storage tank, through the tubing, and intoc the probe's
inflatable cell. Any of thrge pressure gages mounted on the
control unit may be used to monitor the system pressure,
depending on the range of pressures encountered during the
test. A dial gage tracks the piston travel. Since piston
displacements are directly related to the volume of water
injected into the tubing and probe, readings from the piston
displacement dial gage will be referred to as injected
volume readings in this report.

The pree~bored pressuremeter probe employed in this

study is made of a single inflatable cell 40 cm in length
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Figure 43, Schematic of Pre-boring Pressuremeter Model
TEXAM. 1. Probe, 2. Pressure Gauges, 3. Volume/
Displacement Indicator, 4. Manual Actuator, 5.
Tubing, 6. Calibration Tube, 7. Connmection for
Probe, 8. Connection toc the Water Reservolir
(After Makarim and Briaud, 1986).
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and with a deflated diameter of 5.8 ¢cm. The cell membrane
is a rubber cylinder protected against puncture by a series
of overlapping steel strips rubber-glued to the membrane.
The probe itself is hollow to allow drilling fluid and
subsurface water to pass freely through the probe during
insertioca.

5.2 Ihe Cope Pressuremeter Equipment

The cone pressuremeter test equipment i1s also composed
¢f a portabdble c¢ontrol unit and a probe with a single
inflatable cell (Figure 49), It i3 sold commercially by
ROCTEST under the name of PENCEL. The control unit and
probe, however, are more compact than those of the TEXAM.

Pressure is similarly developed in the system through
the use of a piston~cylinder arrangement; however, rather
than reading the piston displacement with a dial gage, a
counter connected to the screw jack which advances the
Piston indicates the volume of fluid displaced in cubdic
centimeters, A single pressure gage indicates fluid pres=-
sure within the systen.

The inflatable cell in the probe has a length of 23 cm
and a deflated diameter of 3.2 cm and is made up of a rubber
membrane protected against pﬁncture by a series of coverlap-
Ping steel strips rubber-glued to the membrane., A dunmy
eccone penetrometer point was mounted on the bottom of the
probe duripng these tests. The probe concects with standard

cone rods and may be advanced into the soil either by
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Figure 49. Schematic of Cone Pressuremeter Model PENCEL.
1. Probe, 2. Pressure Gauge, 3. Volume/
Displacement Indicator, 4. Manual Actuator, 5.
Tubing, 6. Calibration Tube, 7. Connaction to the
Water Reservoir (After Makarim and Briaud, 1986).
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pushing, as with the cone penetrometer, or by driving, to
simulate the insertion of a dr;ven pile.
5.3 IEXAM Rreasyregeter Teat Procedure

Before beginning a series of pressuremeter tests, the
control unit stdrage tank was filled with water. The probe
was then connected to the wunit through the flexible tubing
and the entire system checked for saturation and leaks.
5«3.1 Necessarv Monotonic Calibrations

Once in the field, two calibrations were performed: a
velume calibration and a membrane resistance calibration.
Before calibration, the probe was inflated in the air a few
times to exercise the system components. Then the inflat-
able porticn of the probe was inserted into a tight=-fitting
Steel calibration tube (74.5 mm inside diameter) and
inflated to a pressure equivalent to the anticipated limit
pressure of the soil to be tested. At this time the systen
was again checked for leakage. The pressure was themn drop-
Ped until the probe could first be pulled from the steel
tube, at which point the "zero®™ volume of the probe was
considered to have been reached. The control unit tank was
then ejither bled or filled to read zero injected volume with
the probe still sheathed in the steel tube. The calibration
procedure could then begin,

Since the control unit-tubing=-probe system is not
entirely incozpressible, a volume calibration was necessary

to determine the Mapparent?® volumetric increase in the
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system asscciated with an increase in the internal s3ysten
pressure. This apparent volumetric increase ineludes expan-
sion of the tubing and compression of the inflatable cell
and system fluid, and does unot include inflation of the
probe {Section 6.%). With the probe tightly fitting inside
the steel tube, the system pressure was increased in twenty
15-3econd pressure increments equal to 1/20th of the anti=-
cipated maximum soil limit pressure. The injected volume
and system pressure were recorded at the end of each 15-
second interval (Figure 50).

The membrane resistance calibration was necessary to
determine the pressure required to inflate the probe in the
air to any given injected volume. This membrane pressure
must be subtracted from the pressure recorded during a test
aince this membrane pressure is not applled to the borehole
wall.(Section 6.3). With the probe removed from the steel
volume calibration tube and simply supported to allow for
free cell expansion, the probe was inflated in forty 15=
second volume increments equivalent to approximately 1/40th
of the fully inflated probe volume. At the end of each
increment, the pressure and injected volume were recorded
(Figure 50).

5.3.2 Cyclic Degradatiopn Calibrations

For cyclic testing it was also necessary to determine

cyclic degradation parameters for the volume and membrane

resistance calibrations.




71

‘13]18WIUNEEISd HYXIAL 3yl Joyg
BUOTJIBJQTIIR) SWNTOA PUE BUNESIUY DFT12L3 -0% @2uanBpy

() AR CINTHADVIAS 1A

LA 0z 51 o S ]

L4 — | anianlh S B — T T T ¥ — L A il et St S S ST AN SN c

it -
9 . T
\\\\!\ e L.utl\l\l\.,l.lllallll.l.lr.llll

| ——— A J
- B z
| A
-~ -1 v
| q )
i .
- -1 9
s ]
s y
B NOLLVHAI'IVD ARNIOA DI'IJAD - W 1
| _ HOLLVHEI'IVD FUNSSANd OI°IOAD — ¥ 4 ¢
. .
| HVXZL TAO0H YILIHINNSSAHI 4

2 — A '} A 'l ~ A ' r 4 — A A - i — 'l - | y | |

o1

(sa®wq) 4 “INSSNIL




T2

To determine the cyeclic degradation parameters for the
volume calibration, the probe was inserted into the steel
calibration tube and the pressure increased in a series of
steps as in the case of the standard volume calibration
procedure, When the pressure was approximately equal toc the
pressure level at which cyelic testing in the soil was
performed, the pressure was then decreased to approeximately
half of its peak value. This pressure was maintained until
the end of the 15-second interval, the pressure and the
injected volume values were recorded, and then the probe was
reinflated until the initial pressure was reached again,
completing one cycle. As many as three sats of 100 cycles
each were performed on the TEIAM pressuremeter system with
ﬁegligible degradation (Figure 50). As a result, additional
volume losses associated with cyclic degradation were disre-
garded in the reduction of raw pressuremeter data.

The cyelic degradation parameter fo: the membrane
resistance was similarly determined by cyeling duricg a
standard membrane resistance calibrationm at injected volumes
equivalent to those anticipated during the actual aoil
testing (Figure 50). The differesnce between the cyclic
membrane resistance and the monotoaice membrane resistance
was of sufficient magnitude to warrant the use of the cyclic
membrane resistance i% the reduction of the cyclic test

data.
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5.3.3 20dl Testing Procedures

| After the calibrations were completed, the probe was
ready for the actual soil testing. The borehole was drilled
apd the pressuremeter probe was inserted down to the test
depth. The probe was then inflated in approximately thirty-
five injected volume increments equivalent to 1/40th of the
total fully inflated capacity of the probe. Readings of
pressure and injected volume were taken at the end of each
iS~-second interval.

- Cycling was performed either between preset values of
injected volume or preset values of pressure. Cycling
between preset injected volume values (volume=control tests)
wWwas chosen when modeling the response of displacement con=-
trolled cyclic pile lcad tests, whereas cycling between
preset pressure values (pressure-control tests) was used to
model load controlled cyclic pile load tests,

Geperally, two or thrée series of 20 to 100 cycles each
were performed in each test at pressure levels between 25%
and 75% of the anticipated soil limit pressure,

During the volume=-control tests, the probe was inflated
in volume increments equal to 1750%8 of the probe’s deflated
volume (VOJ, each lasting 15 seconds. This was done until
the pressure was reached where cycling began. At the end of

that 15-second interval the injected volume, V and the

cp’

system pressure, were recorded (Figure 51). Then the

probe was deflated to a pressure, P equivalent to

!"
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approximately half of the pressure Pc At the end of this

p.

15=3econd interval, the pressure, P and the volume, V

r! r’
were noted (Figure 51), The probe was then reinflated to
ﬁhe volume‘vcp and the new preasure was recorded after 1§
seconds, concluding the first cycle, The probe was then
deflated to a volume of Vr, beginning the next cycle, As
many as 100 cycles were run in this manner between the
volumes ch and VP after which the probe inflation was
continued in the standard manner until the next cyeling
level was achieved (Figure 51), The cycling process was

then repeated between the new values of Vc and Vr (Figure

P
51).

Pressure~control tests began in the same manner, incre-
mentally advancing the injected volume until the desired
pressure for the first cyclic series was achieved, As in
the volume=control tests, tﬁe injected voluze ch and the
system pressure Pcp were recorded and the probe was deflated
to Pr and Vr. At this point, however, the probe was rein-

flated until the pressure Pc was regained and after main-

P
taining the pressure pcp for 15 seconds the new injected
volume reading was recorded, concluding the first cycle
(Figure 52). The probe was then deflated until the pressure
bad conce again dropped to Pr (Figure 52). After tke desired
nunber of cycles had been run, the probe inflation was

coptinued in the standard manner up to the next ¢yeceling

level, The c¢ycling process was then repeated between the new
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values of Pcp and P, (Figure 52).

After completing a test, the probe was removed from the
borehole and cleaned to prevent a buildup of s0il particles
between the protective steel strips., The borekole was then
advanced to the next test depth and the soil testing proce-
dure repeated.

5.3 Cone Pressuremeter Test Procedyre

Before beginning a series of pressuremeter tests, the
control unit storage tank was filled with water. The probe
was then connected to the unit through the flexible tubing
and the entire system checked for saturation and leaks.
5.4.1 Neceasary Mopotonic Calibrations

The calibraticn procedures for the cone pressuremeter
were identical to those for the TEXAM (S.ection 5.3.1). The
steel calibration tube used in the cone pressurempeter cal-
ibration had an inside diameter of 33.4 mm.

5.3.2 Cyelic Degradation Calibrationa

The cyclic degradation parameters for the cone pres-
suremeter volume and membrane resistance calibrations were
found through testing procedures identical to those des=-
cribed for the TEXAM (Section 5.3.2). The ecyclic volume
calibration was negligible and so the monotonic velume cali-
bration curve was used in the reduction of test data. The
difference between the cyclic membrane resistance and the
monotonic membrane resistance was significant, and so the

cyclic membrane resistance was used in the reduction of
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cycelic test data.
5.4.3 S04l Testipg Procedures

The 30il testing techniques for the cone pressuremeter
Wware the same as those emploved in the TEXAM tests except
for the insertion method. In the field tests at the Univer-
sity of Houston Foundation Test Facility, the cone pressure-
meter was either pushed into the s0il at a constant rate of
0.1 ft/sec (Figure 53), or driven with a 28 1b hammer drop-
ping approximately 4 feet, accelerated by hand, and hitting
an anvil clamped to the cone rods (Figure 54), During the
model pile tests in the drum at Texas A&M University, the
probe was either driven to depth with a rawhide mallet or
positioned at a predetermined depth in the test drum and the
soil backfilled and compacted around the pile. This latter
technique was chosen to simulate the conditions surrounding
the 10.75 inech pile at the University of Houston. More
specific details on this insertion techbnique will be given

ip Section 8,2,
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6., PRESSUREMETER DATA REDUCTION TECHNIQUES

6.1 Initial Pressure Reading

Before each test, a pressure reading, Pi’ is taken with
the probe simply supported im the air at the same elevation
as the pressure gages mounted on the control unit. This
reading may not equal zero due to temperature variations
during the testing pericd, gage error, or excess pressure
necessary to inflate the probe cell to its "zero®" calibra-
tion volume (Sectiocn 5.3.1)., This imitial pressure is not
exerted on the 30il cavity wall and thus must be subtracted
from each raw pressure recorded during the test.
6.2 Hydrostatic Pressure

With the probe poasitioned at the teat depth, a hydro=-
static pressure exists within the inflatable cell, Pue to
this pressure, there 1s a difference between the pressure
reading on the control upnit and the pressure which exists
in the probe. This pressure difference, Ph, is equal to the
upit weight of the system fluid multiplied by the difference
in elevation between the pressure gage and the cell. Since
this pressure is not registered on the pressure gage, it
must be added to each value recorded during the pressureme=
ter test.
6.3 Membrage Resistance

The membrane resistance calibration curve is a measure

of the pressure necessary to inflate the probe in air. The
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raw pressure from PMT test data at any given injected volume
must be corrected by 2ubtracting the membrane resistance

pressure, P corresponding to the same injected volume.

a?
The pressure Pc i3 necessary Jjust to expand the probe and is
noet transfered to the 30il cavity wallas,

For c¢yclic tests, the membrane reslistance degradation
must also be considered (Figure 50), Fellowing the degrada-
tion model presented in Section 2.2 (Idriss, et al., 1678),
the formula for determining Pdn at a given value of injected

volume and cycle number N may be presented as:

Pcn

-a
PN (2)
where

membrane reaistance pressure at N cycles

o
n

e+
n

monotonic membrane resistance pressure

=
1]

number of cycles at which the membrane
resistance pressure is desired

a = membrane resistance degradation parameter.

For the TEIAM pressuremeter the 3 was 0.02, ihile for the cone
pressuremeter the 3 was 0.03.
6.4 Compressibility

The volume calibration curve 1is a measure of the
increase in volume of the upit-tubing-probe system when the
pressyre ls increased but the probe Iis prevented from
expanding by sliding it into a steel casing. Depending on
the fit of the calibration casing, this curve may require

adjustment to account for the probe's seating against the
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casing wall., This is accompliskhed by translating the injec=
ted volume origin to ccincide with the point of intersection
between the jinjected volume axis and a projection from the
calibation curve where contact with the casing wall is
evident (Figure 55)., Raw injected volume data from pres-
Suremeter tests at any given pressure must be corrected by
subtracting the adjusted volume calibration volume, vc,
corresponding to that same pressure. The volume Vc i3 not
assoclated with the cell expansion. The degradation para=-
meter for the volumetric inerease was found to be negligi-
ble; therefore, no additional corrections were needed to
adjJust the raw pressuremeter data for the influence of
cycling on the system compressibility.
6.5 Corrected Presayremeter Curve

The complete correction process encompassing the fac-

tors described above may be mathematically expressed as

follows:
Veorr(® = Vg = Vo : (4
where
Pcorr(N) = the pressure exerted on the socil cavity wall

at Ncycles

Prn athe raw pressure read during the test at N
cycles

the initial pressure reading with probe at

Py
gage bheight

Ph the hydrostatic pressure correction = E x V¥
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B = the difference between the gage elevation
and the elevaticn at the center of the
inflatable cell {(test elevation)

Y = the unit weight of the system fluid
Pcn = membrane resistance calibration pressure at
N cycles (equation 2)
N = number of cycles
a = membrane resistance cyclic degradation
parameter
vcorr(N) = the corrected injected volume at N cycles
vrn = the raw injected volume read during the test
at N cycles
Von = the adjusted volume calibration value

associated with a pressure of P ().

corr

In order to normalize the final corrected pressuremeter
curves, the corrected injected volume values are used to
derive the relative increases in the probe cell radius.

This {3 achieved by assuming that the cell behaves as a

cylinder expanding radially, such that:

-
-

(‘-31) ‘/ET/—%'WE- (s)

Ro
where
AR = the increase in the probe radius
Ro = the deflated probe radius
AV = the corrected injected volume {(increase in probe

volume)
Vo = the deflated probe volume.
Thus in the final form, the corrected pressauremeter curves

are presented as in Figure 56, with the corrected pressure
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against the borehole wall, P, along the vertical axis and
the increase 1in probe radius divided by the derflated probe
radius, AR/R, (%), along the horizontal axis.

PRESRED, a microcomputer program written by L.M. Tucker
(1986) to reduce monotonic pressuremeter test data, was
modified to allow 1t to handle cyclic pressuremeter test
data and used to reduce the pressuremeter da:a collected
during this project, It should be noted that the corrected
curves presented in this report do not incorporate the
initial reading correction (PiJ;however, this cerrection
was performed before prediction procedures were employed.

6.6 Pressurepmeter Parameters

The pressuremeter first lcad modulus, E is calculated

p'
from Baguelin, et. al., (1978):

I AR\ \2 AR\ N2 (p..
e (1 +(R°)2> ’ (1 +(“°)1) tFamfo)

T ey comy

where v = Poisson's ratio of the soil and is usually assumed

to be 0.33. All other parameters are defined on Figure ¢57.
The values of (P1,{AR/Ro)1) and (Pz,(aR/Ro)z) are taken fron
the steepest initial linear portion of the corrected pres-
suremeter curve (Figure 57).

The pressuremeter reload modulus, E is calculated

r'

using the formula:
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Figure 57, Pressuremeter Parameters Derinit_:ion.
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(1+v) 1 + AR 2 & (1 + [AR e (P2p=P1p)
Ro 2p Ro ir
Er = ‘ (7

S AN O

|- -

with (P1r,(Aﬁ/Ro)1r) and (Pzr'(AR/R°)2r) being the two data
peoints on the reload portion of the pressureseter test
(Figure 57).

The horizontal earth pressure at rest, POH' is assumed
to be the pressure coinciding with the point of maximunm
infléction on the corrected pressuremeter curve's initial
portion (Figure 57).

With the pressuremeter modulus and horizontal earth
pressure at rest determined, the initial borehole radius may
be defined as the (AR/ Ro) value coinciding with the inter-
section of the pressure POH value and a projection of the
pressuremeter first load modulus line (Figure 57). The
relative increase in radius necessary for the probe to seat
against the borehole wall is thus denoted by (AR/Ro)i. For
the reload curve, a similar initial reload borehole radius
may be found by projecting the reload modulus to intersect
Pog at a relative displacement of (AR/Ro)ir.

The limit pressure, P, i: defined as the pressure
necessary to expand the volume of the so0il cavity to twice
its orligipal wvalue. This pressure c¢orresponds to an
increase in the probe radius equal to 0.41 + 1.41 (AR/Ro),.

Most ¢often this requires manual extrapolation of the curve
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to that level of expansion (Figure 57). The net limit
pressure, P:, is the difference between the limit pressure
and the at rest horizontal earth pressure:
Pp = Py = Pog (8)

From the solutiocn of the expanslon of ap ipfinitely
long ¢ylinder in an elastic homogenecus full 3space,
Baguelin, et al., (1978) determined that the se:ant shear
modulus, Gs(N) for the Ntb cycle may be calculated as fol=-

lows (Figure 58):

1 4@§m<“’))2 . (1‘+cé£) 2
Ga(N) (f_g_g) E} {%&))2 — +(§_§)’1~§2 (9)
where
Pcp = peak cyclic pressure
Ro = deflated probe radius

(éﬁ) = relative increase in probe radius necessary for
1 seating against the cavity walls (Figure 57)

relative increase in probe radius corresponding
to the peak of the Nth cycle (Figure 58)

————
&
-3
g

e
H

=
]

number of cycles at which the secant shear
modulus i3 desired (note that the number of
eycles is counted as shown on Figure 58).

The degradation model used in this study is (Idriss, et

al., 1978):

Gs(N) = Gs(1) x N=2 (10)
where
Gs(N) = secant shear modulus at the N®B cycle
Gs(1) = secant skear modulus at the first cycle

N sumber of cycles
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a = cyclic degradation parameter for the secant

shear wmodulus.
The degradation parameter g for a particular series of
cycles 13 equal to the negative slope of the best £fit line
from the plot of log (Gs(N)/Gs(1)) versus log N (Figure 59).

h

The cyclic saear modulus, Ge(N), for the yt cycle may

be calculated from pressuremeter tests as follows (Figure

60):
() . (o (agn)):
Ge(N) =G§£)L(‘ ﬁe§;1§l>)2 — +.Q§ZLEL - (1)
Ro ( ( Ro ))
where
Pr = eyclice pressure varlation
Ro = deflated probe radius
Gé%dL!% = relative increase in probe radius corresponding
to the peak of the Nth ecyecle (Figure 60),

GQ% (N) = relative increase in probe radius corresponding
° to the bottom of the Nth cycle (Figure 60).

N nugber of cycles at which the cyclic shear

modulus is desired (note that the number of
eycles is counted as shown on Figure 60).
Using the same degradation model (Idriss, et al., 1978)

as for the secant shear modulus degradation:

Ge(N) = Ge(1) x NP (12)
where
Ge(N) = cyclic shear modulus at the N'B cycle
Ge(1) = eyelic shear modulus at the first cycle
N = nuﬁber of cycles
b = eyclic degradatiocn parameter for the cycllic

shear modulus.
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The degradation parameter L for a particular series of
cycles 13 equal to the negative slope of the best fit line
from the plot of log (Ge(N)/Ge(1)) versus log N (Figure 61).

The daegradation of the cycllic ahear modulus was not
employed 4in th§ prediction methods used in this report.
However, the plots of log (Ge(N)/Ge(1)) versus log N for the
pressuremater tests conducted during this= project are pre=

sented 1o Appendix B.
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T. PRESSUREMETER TESTS AT THE ONIVERSITY

OF HOUSTCN FOUNDATION TEST FACILITY SAND SITE

7.1 Zest Locatiops, Insertion Techpiques, and Pressuremeter
Iypes

In the spring of 1985, eleven pressuremeter tests were
conducted at the University of Houston Foundation Teat
Faclility in the sand depoesit surrounding the single 10.75
inch test pile. The locations, insertion techniques, and
pressuremeter types are detailed in Table 4 and Figure 62.

A variety of pressuremeter insertion methods were used
to study the effect of the insertion technique on the scil
response. The pre=bored insertion technigue was used with
the TEIAM pressuremeter systen. The TEIAM probe had a
diameter of 5.8 cm and an inflatable length of 40 cm. The
boreholes were prepared with a hand auger while pumping
drilling mud veftically through the bit. The pushed pres-
suremeter tests were performed with the c¢one pressuremeter
(CPMT) system, The CPMT probe had a 2{ameter of 3.2 cm ang
an inflatable length of 23 cm. The probe was advanced to
the test depth at a rate of 0.1 feet per second by a drile-
ling rig (Figure &53). The driven inserticn technique also
employed the ¢cone presauremeter, driven to the test depth
using a 28 1b hammer with a fall of apprqfimately 4,0 feet,
accelerated by hand, and striking an anvil elamped to the

cone rods above the probe (Figure 5&).
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Borehole Insertion Pressuremeter Type Date
Number Method

- T3 Pre-bored PBPMT / TEIAM PMT 4 s 85

Ty Pre=bored PBPMT / TEXAM PMT 4/ 85

P2 Pushed=-1in PCPMT / Cone PMT 5 / 85

D1 Driven~in DCPMT / Cone PMT 5/ 85

D3 Driven=-in DCPMT / Cone PMT 5 / 85

Table 4, Pressuremeter Tasts Performaed at the Dniversity of

Houston Foundation Test Facility Sand Site.
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7.2 2ressuremeter Modull and Net Limit Pressyre Profiles

Profiles of the pressuremeter first load modulus,
pressuremeter reload modulus, and the net limit pressure are
presented in Figures 63, 64, and 65. These values are also
tabulated in Table 5. The stiffer response of the driven
pressuremeter as well as its higher net limit pressure may
be indicative of the local densification that occurred
during driving. Visual evidence of the densification was
provided by a cone of depression that formed arcund the cone
rods as driving proceeded (Figure 66).

7.3 Bre-bored IEXAM Pressuyrepmeter (PBPMT) Besulty
7.3.1 Corrected Pressyrepeter Curves

The raw pressuremeter test data was reduced as
described in Section 6. The resulting corrected pressureme-
ter curves, borehole pressure versus relative increase iz
probe radius, are presented in Figur