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Preamble

This is an integrated account ofvthe theoretical
investigations described in the technical reports’Ml - M8
prepared during the year. While a little of the iess interesting
calculation has been omitted, the main purpose is to provide
a comprehensive, self-contained, account of the theoretical
development which must complement the experimental programme.

On the basis of existing qualitative knowledge of the response
of ice to load, we must ask what classes of constitutive model
(constitutive law) are compatible with this behaviour, and
analyse the response of such models in feasible test geometries
to correlate model functions with test data. An acceptable
model must describe the response to general (multi-axial) stress
in a three-dimensional world, and must satisfy the basic
invariance principles of physics. Subject to these requirements
we want to determine, at least as a preliminary objective, the
minimal complexity necessary in each model class to predict the
known shape of response, and then to formulate a minimal,
feasible, test programme necessary to determine the model functions.

While models so constructed exhibit identical response to
the test loads, distinct responses to other load configurations
can be expected, and further test data and field observations
will be necessary to distinguish the merits of different models,
and possibly indicate additional features which should be included.

Furthermore, different models may be better approximations in



different applications, and it is important to identify the
dominant response features in prescribed applications to make

the best choice of model. Distinct simpler models may offer
considerable advantage over a more general modeliwith wider
validity when numerical solutions of complex engineering

problems are required. The essential feature of ice response

on engineering time scales (excluding very short time dynamic
effects) is its non-linear transient creep, which requires a
non-linear viscoelastic model. Even though strains may remain
small in many applications, the superposition property of linear
viscoelastic models does not hold to any acceptable approximation,
and this very attractive tractable linear theory must be rejected.
A long-time scale non-linear viscous model conventional in
glaciology igndres the crucial transients. The first phase of
the Project has focussed on the recently developed non-linear
viscoelastic relations of differential type, distinct forms for
fluids and for solids. The latter allow strain jumps when stress
jumps are applied, allow anisotropic configurations, and exhibit
induced anisotropy in configurations reached by distortion of

an initially isotropic state. Many positive conclusions are
reached in regard to the questions raised above. There is a
final brief commentary on the merits and difficulties associated
with non-linear integral operator relatiohs, which should be

investigated in the next phase.



l. 1Introduction

Present knowledge of the transient response of ice to
applied load under controlled conditions is limited to results
of laboratory tests in uni-axial compressive stress, which
must therefore be the starting point of the construction of
constitutive models. While the quality, or shape, of the
responses to constant stress and to constant strain-~rate
loading has been established, many more detailed guantitative
results must be accurately determined to complete the uni-axial
stress description. Such experiments are a preliminary stage
of the present Project, and will also serve to test and assess
instrumentation and technique before embarking on the essential
two-dimensional test programmes discussed later. A heuristic
approach is to deduce minimal sets of physical variables
necessary in a constitutive relation (of a given class) to
exhibit the known shapes of these responses in uni-axial stress,
which was the basis of the recent development of viscoelastic
fluid and solid relation of differential type (Morland 1979,
Morland and Spring 1981, Spring and Morland 1981). Since this
account draws substantially from the theory described in these
papers, it is convenient to introduce the abbreviated reference
notations (M), (MS), (SM), respectively.

The rational procedure, followed in these papers, is to
constrﬁct relations between frame—inqﬁﬁfferent tensors which
are three-dimensional measures of the physical vafiables

required in the minimal sets. 1In the above models, stress,
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stress-rate andpstrain or strain-acceleration are used. Thus
the fundamental physics invariance principles - coordinate
invariance and material frame indifference (objectivity) - are
immediately satisfied. Such tensor measures afe not unique,

and a general algebraic relation between the tensors is far

too arbitrary to correlate with constant stress and constant
strain-rate responses. So simplified forms and restricted
dependence of the response coefficients, scalar coefficients

of the different tensors, are proposed, retaining only the
flexibility needed to describe the known response shapes. There
are clearly a variety of alternative relations of a given class
which could be correlated with the same uni-axial data, but
which will predict distinct responses under different loading
geometries and different load histories. A successful

programme of multi-axial load testing is required before such
distinctions can be constructively evaluated. Restricting the
above differential tensor relations to uni-axial stress gives
single relations between the uni-axial stress and stress-rate,
and axial strain-rate and strain-acceleration or strain.
However, tensor terms combine into single uni-axial terms,

and so cannot be distinguished by uni-axial response, and response€
coefficients which are functions of various tensor invariants
appear only as functions of the axial variables. In consequence
a model can only be completed by determining the responses in
suitable multi-axial load geometries. A particular

two-dimensional test geometry has been analysed under the



the Project (M2), and shown to yield the required number of
independent relations. There is also a consideration of
domains of dependence in the space of stress tensor invariants,
which can be covered by tests involving compres;ive stresses
alone.

While the restriction of valid tensor relation to uni-axial
stress is the natural order, to highlight the physical
description and heuristic process of model construction we
will concentrate first on the uni-axial response and the
uni-axial relations which are derived from valid tensor relations
(MS, SM). The correlation of constant stress and constant
strain-rate responses with coefficients in the uni-axial
relations is described, and the distinction between fluid and
solid model correlation noted. 1In particular it is seen that
the two separate test responses cannot be independent if described
by this fluid model, but are not sufficient to determine the
uni-axial coefficients of the solid model. A general analysis
of the solid model response under the Project (M6, M7) has shown
that no uni-axial load test can yield a third indépendent
relation necessary to determine the complete set of uni-axial
coefficients. Reduced forms which allow determination have
been investigated (M8), together with their implication for,
and recognition by, different response features. A particular
form has been chosen for correlation with uni-axial data
obtained in the preliminary phase of the experimental programme.

Next there is a brief description of the fluid and solid
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model tensor relations, to show the increased number of response
coefficients which arise, and their dependence on various tensor
invariants. The response to general tri-axial (principal) stress
is analysed, and two-independent stress geometries4are investigated
(M2) to learn how two independent relations in addition to the
incompressibility constraint can be obtained to complete the
three-dimensional description. Explicit terminology is introduced
to define and distinguish different two-stress geometries, to
eliminate previous ambiguous (at least to the writer) descriptions.
A bi-axial stress geometry is shown to yield the required independent
relations. In addition, the domains of stress tensor invariants
space covered by compressive stfesses alone in different loading
geometries are determined. Dependence on shear stress invariants
or on one shear invariant and pressure (M5) present different
pictures. The implications of relaxing the conventional
incompressibility approximation and introducing compressibility

or dilatancy relations are discussed (M3).

A preliminary report (Ml) outlined various objectives and
plans for the Project. The major element is the experimental
programme. In this first period we have focussed on a theory for
constant temperature conditions and (initially) isotropic material,
and disregarded effects of salinity. While anisotropy and salinity
effects are known to be significant, existing data is inadequate
to formulate a satisfactory theory. It is possible that plausible
idealised models may have to be devised in advance of experiments,

in order to assess likely effects and design optimal experiments.



The marked dependence of creep-rate on temperature is well
established. Test data must be obtained at a sufficient number

of constant temperatures in the range 230K - 273K of practical
interest to infer and correlate the role of temperature. At
present, the most attractive theory is that of the “thermorheologic-
ally simple material”™ in which temperature influences only rates
of éhange, which implies that a universal (temperature-independent)
mechanical relation holds on a pseudo or reduced time scale
(Morland and Lee 1960). Applied originally to linear viscoelastic
materials, it is readily extended to non-linear viscoelastic
differential relations (M), and involves only the introduction of
a single scalar "time-shift function" of temperature. 1In the
conventional viscous fluid relations adopted in glaciology, this
shift function is the usual temperature dependent coefficient. It
has yet to be confirmed that this single rate factor applies over
the complete transient response, coincident with the minimum

strain-rate factor of the viscous relation.

2. Uni-axial stress response

The basis of our constitutive model construction is the
qualitatively established constant stress and constant strain-rate
responses in uni-axial compressive stress. A wide account of the
mechanical properties of ice, including these features, is given
in a recent review article (Mellor 1980). 1If L, is the initial
specimen length at time t = O, and £ its length at time t,

then the longitudinal engineering stress e measured as contraction



per unit initial length (positive in compression) is

e = ————— , < 1. (2.1)
The engineering strain-rate é R and natural strain- rate r
measured as rate of decrease of length per unit current length,

are given and related by

e==-4i/n ., T=-1in, e = (l-e)r. (2.2)
The ratg e with its reference to the initial length L, 1is
natural in a solid description, and the rate r with respect to
current length is natural to a fluid description. They are
approximately the same for the small strains arising in experimental
data and many applications, but differ significantly in the long-time
creep behaviour assumed to complete the viscoelastic continuum
description. The present models contain no criteria for rupture.
Also Mellor remarks that reported constant strain-rate experiments
may mean constant r or constant e ; the latter is better
described as constant (end) displacement rate.

Let o0 denote the compressive axial Cauchy stress, inward
force per unit current cross-section, and o the nominal stress,
inward force per unit initial cross-section. Constant stress could
refer to either constant o or constant o ., but here the precise
description, constant load, will be used to denote constant T .

The present theory is developed with the incompressibility

approximation, and then

o = o(l-e) . (2.3)
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Interpreting the responses described by Mellor as constant
load (constant o©) and constant displacement-rate (constant e)
results gives the typical curves shown in Figs 1 and 2 respectively.
At constant o there is an initial elastic strain jump ee(E)

given by

ee(o) = o/Eo, (2.4)

where Eo is the Young's modulus at zero stress. It is supposed
that the stress jump o© from zero stress is applied
instantaneously at t = O, and that the creep curve as t ~» O+
is a smooth backward extrapolation of the response after wave
effects have decayed. Now E_ is of order 10'%m™2 (sinha
1978, Michel 1978, Mellor 1980), so that a moderate stress of
order 10°Mm™2 induces an elastic strain of order 1074, to be

2 in many applications.

compared with creep strains of order 10
Thus elastic strain jumps are commonly neglected in comparison
with the total creep. There is a primary decelerating creep

(¢ < 0), a secondary or approximately steady creep around the
stationary point e =0 at tm(g), em(E), then an accelerating
tertiary creep (¢ > 0), shown in Fig. la. The dashed line
represents a possible long-time asymptotic behaviour in which

e » 1 (specimen length squeezed to zero), which corresponds to

o - 0 and hence a long-time steady viscous response rE(o) + 0
if maintained zero stress o implies zero strain-rate r. The
viscous fluid response normally assumed in glaciology adopts the
minimum strain-rate rm(c) which occurs at time tm(g), though
strictly requires the long-time response rE(o). Mellor remarks
that rE(c) ’ rm(c) , may not be too different at low stress,

though laboratory time scales are too short to reach any firm
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conclusion. The asymptotic result (2.5) is not crucial to the
model correlation over time scales of interest, and it is the
shape of response shown by the solid lines which is relevant.
Figure lb shows the associated strain-rate e s with minimum
en(9) at time t_(o) . ‘

The typical stress response at constant displacement-rate
(constant é) is shown as a stress-strain curve in Fig. 2, where
e = et . The maximum stress EM(é) + which also has the unfortunate
description failure stress even though no failure of the material
occurs, occurs at strain eM(é) and time tM(é) . Again the dashed
line represents a possible asymptotic behaviour. Mellor suggests

that both en and e are approximately 0°0l over a wide range of

M
stress and strain-rate respectively, and that there are indications

that the maximum stress EM(é) is the constant stress o required

to produce a minimum strain-rate ém(g) = e . That is
oM[em(c)] =0 and em[cM(e)] = e. (2.5)

These features are not crucial.to the model construction.

With the alternative constant stress (constant o) and constant
strain-rate (constant r) interéétations, the typical strain-rate
and stress responses in time are shown in Figs 3 and 4 respectively.
The long-time response is shown as an asymptotic strain-rate rE(o)
and asymptotic stress UE(r), with the case re(c) < ro(o), where
ro(o) is the initial strain-rate, illustrated. Model construction
for the case _ro(o) > re(o) would be similar. For either
interpretation, the families of curves for different constant I3

or different constant o are non-linear in o, o respectively,
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as illustrated by the conventional glaciology viscous law rm(o)
represented by a power law or polynomial. Similarly the families
for different constant € or r are non-linear in e and r
respectively. Accurate details of these families of respohses

have not yet been established, but their accepted shapes diégte
minimal forms for compatible differential relations. In particular,
the non-monotonic response, decelerating creep followed by acceler-

ating creep at constant O , has implications, and has not, to

my knowledoe, arisen in other branches of rheology.

3. Viscoelastic fluid relation for uni~-axial response

A fluid relation is independent of the strain from a fixed
reference configuration, and depends only on straiﬁjﬁéﬁative to
the current configuration. In particular a viscous fluid expresses
o as a function of r, and a viscoelastic fluid of differential
type relates o,r , and their material time derivatives. The
conventional definition does not include stress time derivatives,
but it is shown that such terms are essential to reproduce the
response in Fig. 4. First note that a viscous fluid relation in
which o¢ is a function of r, or vice-versa, gives the responses
constant r to constant o and constant o© to constant r,
in conflict with Figs 3 and 4. Examination of the constant O
response alone, Fig. 3 (M) showed that a term in r (at least) is
needed so that the constant o© response is described by a

differential equation for r with non-constant solution. Similarly,
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non-constant o for constant r requires a term in o (at
least) (MS). Construction of a frame-indifferent tensor relation
between stress, stress-rate, strain-rate, strain-acceleration,

shown later, leads to0 a uni-axial stress relation :

”~ ~ ”~

%wlo + %$3 (6 - ro) = ¢, - %¢2r2 + ;35, (3.1)
where the tensor response coefficients ;1. $3, ;1, ;2, $3 are
here functions of o0, r, and their derivatives.

Now consider the response shape Fig. 3 for constant o¢ . 1In
the strain-rate range rm(o) < r < re(o) there are two values of
r at each r, so the differential equation for r(t) must yield

a two-branch solution:

f_(t) =R (ryo0) <0, r o2rzr_,
(3.2)
r (t) = R+(r,o) 20, r, ST <I, .
where
R_(r ,0) = R (r ,0) =0, R +0 as r +r_ . (3.3)
The family of data curves gives the functions R_(r,c) and
R+(r,o). It is convenient to make the definition
R+(r,o) 0, re < r < ro . (3.4)

so that both R_(r,0) and R (r,0) are defined in a common domain
r, 2 r 2r, , though the branch f+(t) does not exist in the
extension. The appropriate differential equation for r(t) therefor
has the form

£ + £(r,0)f= F(r,0), r(0) = r_(0), (3.5)
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¥ . y
21 = = f + (f? + 4F) (3.6)
r
+
with
Fz0, £20 =>r_<0, r_20. : (3.7)
Thus
f=-(R_+R), (£2 + tlF);5 =R, -R_ , r, s<rsrg (3.8)
which determine f(r,0), ¥(r,o), with
F =0, Y <sr <sr . (3.8a)

e o
Analogous relations hold for the case r, < re- The functions
f(r,0), F(r,c), are related to the response coefficients in
(3.1).

A similar analysis of the response shape Fig. 4 for constant

r shows that the differential equation for o(t) must yield

a two-branch solution

o, (t) = I (x,0) 20, 0s50soy,
(3.9)
6_(t) = I _(r,0) =0, Oy 2 0 > Op»
where
I (ryoy) =L (r, oy) =0, Z_~+0 as o =+ 0p. (3.10)
The functions 2+(r,o), I_(r,o0), with the extension
I_(r,0) =0, Op 2 0 2 o, (3.11)

are given by the data curves. The appropriate differential
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Afor c(t) has the form

62 - g(r,0)0 = G(r,0), ©(0) = O (3.12)
where
2 cj* =g+ (g% + 4G) " ‘; (3.13)
0-
with
G20, gz20%o0, 20, o_<0. (3.14)
Thus
g=3, +I_, (g°+ 4G)!5 =I,-I_, O0<0 =0y, (3.15)
which determine g(r,o0), G(r,c), with
G =0, 0 <0 < Op - (3.16)

The functions g(r,0), G(r,c), are related to the response
coefficients in (3.1).

Now there are four relations in (3.8) and (3.15) to determine
the four functions £, F, g, G, in terms of the data functions

R, R,, £, I_. However, the differential equation (3.5) must

+I +l

follow from (3.1) when 6 =0, and (3.12) must follow from
(3.1) when r = O, for the same set of response coefficients
bye Y30 G50 05, ¢q. The forms (3.5), (3.12) can be derived from
(3.1) by a variety of response coefficient assumptions, but for

a series of constructions (not exhaustive) (MS), in each case

F =G. (3.17)

Thus, for these models, only three of the data functions R_,

R z I_, can be independent, so Mellor's conjecture that

+! +

constant strain-rate response is determined by constant stress
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response (or vice-versa) is partially, but not fully, realised.
For example, the three independent functions £, F, g can be
determined from the full constant stress response R_ and R,

together with the primary constant strain-rate stage I leaving

47
the stress relaxation I_ predicted. If the four data functions
are not compatible with the identity (3.17), then an alternative
construction and possibly a more general relation than (3.1) are
required. Note that the identity (3.17) and various F and G

relations also imply the inverse relation analogous to (2.5) and

the inverse relation for the long-time response:

rm[cm(r)] =r, re[oE(r)] =r. (3.18)

Given the three independent data functions, only three
response coefficients in (3.1) can be determined of the four
required after normalising (dividing throughout by il or
$3 for example, if not zero). However, in uni-axial response,
the ;l and ;2 terms form a single composite term which can
be separated only by multi-axial response. But the different
normalisationsand constructions lead to different models for the
same data, so the data does not determine a unique model of the
form (3.1). Again it is multi-axial response which will

distinguish the merits of the different models.

4, Viscoelastic solid relation for uni-axial response

A solid material relation is obtained by including dependence
on the strain e from the reference configuration, and it is

convenient to describe the response in terms of the nominal stress
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0. The non-uniform o(e) shown in Fig. 2 for constant e
again implies that a stress-rate term o is required in a
differential relation. At constant o, the non-uniform e (t)
and e(t) shown in Fig. 1 imply that a differential equation

is required for e(t), and this is achieved by terms in strain
e and strain-rate e. Thus the strain term replaces the
strain-acceleration term necessary in a fluid relation where
strain dependence is excluded. The uni-axial relation therefore
involves terms in 0, 0, e, € (SM). Construction of a
frame-indifferent tensor relation between stress, stress-rate,

strain, and strain~rate, shown later, leads to a uni-axial

stress relation

(1-e) 30 + @(1-e)2[(1-e)3 - 2e0] = %c;(l—e)é + we , (4.1)

~ A

where the three response coefficients @, ¢, w, are functions

of 0 and e. That is, the tensor response coefficients have
been limited to dependence on stress and strain invariants, and
not on their rates, since this leaves more than enough flexibility
‘to match the responses shown in Figs 1 and 2. Further, it has
been assumed that the stress and stress-rate tensors enter only

in a linear combination, and that the strain and strain-rate
tensors enter as separate terms. The form (4.1) is derived from an
isotropic law for the reference configuration, and the ;, ;

terms are each composites of the uni-axial restrictions of two
tensor terms. There are five response coefficients in the tensor
relation, and the normalisation shown in (4.1) implies that the

stress tensor must be present.

Since the differential fluid relation has explicit dependence
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on the strain-acceleration f, the non-monotonic r(t), Fig. 3,
at constant o gives two functions R_ and R_ for r(o,r).
Here there is no explicit dependence on e so we can expect
only one independent data function from the constant ¢ response.
Also, for the response to constant displacement—réte, constant
é, the non-monotonic 0 (e) response, Fig. 2, does not imply
that do/de is a double-valued function of (0,e), since at
each repeated value of o, e 1is distinct. Since the uni-axial
relation involves three reponse coefficients &, 5, ;, two
other basic tests have been analysed to see whether their response
data, if obtained, could provide further indpendent relations
between the response coefficients. It is found that they provide
no independent relations, though one or both may be useful
alternative experimental tests. It is then shown that no
uni~axial stress loading can provide a third independent relation,
so that the complete uni-axial model requires multi-axial tests.
Reduced models which can be determined by two uni-axial tests are
examined, along with their main features so that a trial model
may be adopted in advance of multi-axial data.

It is convenient to introduce the following explicit test
terminology and abbreviations:-

CL: Constant load (constant nominal stress),

CLR: Constant load rate (constant nominal stress-rate)},

CD: Constant end displacement (constant engineering strain),

CDR: Constant end displacement rate (constant engineering
strain-rate).

Corresponding constant stress and constant strain-rate tests then
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refer to current configuration measures.

At constant o (CL), (4.1) gives
03 6(1-€) + 205 (1-e)?] = (1-€)°G - ve . (4.2)

Now it is assumed that the strain-response e(t) , Fig. 1la,
is monotonic, so that t can be expressed as a single-valued

function of e for each 0 :

t = T(0,e) . (4.3)

Then the strain-rate response é(t) , Fig. lb, can be expressed

as a function of e for each 0, thus
CL: o0 =0, e = F(o,e) , e(0) = ee(E) , (4.4)

where the data function F(o,e) is related to the response

coefficients through (4.2) which gives

(1-e)’o ’A‘:’e ) (4.5)

F(o,e) = ==
%d)(l-e) + 290 (1-e) 2

This function F is not related to that used in the previous
fluid model analysis.

At constant e = w (CDR), it is assumed that the family
of response curves o(e) for different w, Fig. 2, do not
intersect; that is, at each e, o increases with w, which
is consistent with an increasing peak stress OM(W) at constant

e (independent of w) . Then there is a monotonic o (w)

M
relation at each e so that w can be expressed as a single-valued
function of o for each e:

W = W(E,e). (4'6)
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From the family o(e) for different w, a generalised Young's
modulus can be defined and expressed as a function E(0,e) by

eliminating w through (4.6), thus

CDR: e =w, O =G(we), E(5,e) = %g w (4.7)

That is, E(o,e) is the stress-strain gradient on the constant
strain-rate response. The function pair W(o,e), E(c,e) of
the CDR response family are related to the response coefficients

by setting e =w in (4.1), and using (4.¢%) and (4.6) gives

E(o,e) = E(E,e)<{l - Elg¥51-} ' (4.8)
W(o,e)
where
E(G,e) = —32 . +28 (4.9)

2(1-e) 2y l-e

Thus the CL and CDR tests yield two independent relations (4.5)
and (4.9) to determine three response coefficients @(E,e),
$(E,e), w(5,e). The factor E(E,e)has a natural rZe in the
jump relation derived later.

Now consider the alternative CLR and CD tests for which there
are no established typical response curves. At constant load-rate
é = g (CLR), assume that there are a family of monotonic
non-intersecting strain responses e(t) for different g, as
illustrated in Fig. 5a. It is supposed (in accord with general
observation) that the time to reach a given strain e increases
as the stress;rate g increases, then the corresponding curves

for e as a function of © = gt fan out, as shown in Fig. 5b.
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Thus, at each 0, there is a monotonic decreasing e(g) relation

which can be inverted,

=g, e=e*0o0, 9, q=0Q(,e), (4.10)

aj.

CLR:

with the derivative signs

* *
de* , o Bet o 30,

<0 . 4,11
30 q 30 ( )

&1

L ]
In turn, the strain-rate on 0 = g can be expressed in terms

of o0,e, by eliminating gq through (4.10), thus

&=qg2* =pE,e), >0 (4.12)
90

by (4.11). The function pair Q(o,e), D(c,e) are related to

the response coefficients by setting o = q in (4.1), thus

(1“;135 - we +A-(l—e)3 @Q(E,e) . (4.13)
S0 (1-e) + 200 (1-e)?

D(c,e) =
Since strain increases monotonically at constant stress,
it is reasonable to suppose that stress decreases monotonically
from the initial elastic stress jump at constant engineering
strain (CD). Thus, at each e, t can be expressed as a

single-valued function of 0,

t = T*(5,e) , T < e;l(e) , (4.14)

and the stress-rate expressed as a function of o ,e :

-1

e (e). (4.15)

Ch: e=0, o0=-L(o,e) <0, 0o se
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By (4.1)1

- e =
L(G,e) = 1=€) 0 - we (4.16)

(1-e)®y

Table 1 summarises the data functions, and their relation
to response coefficients, determined by the four tests discussed

above. Note that the relations (4.8), (4.9) in CDR are a single

Table 1 Test functions

Test Data functions Relation
cL F(o,e) (4.5)
CDR W(c,e), E(o,e) (4.8),(4.9)
CLR Q(c,e), D(c,e) (4.13)

cD L(c,e) (4.16)

relation for the response coefficients in terms of the
data-functions W and E when F is eliminated by (4.5). Thus
the four tests give four relations for the three reéponse
coeffiéients. However, only two relations can be independent
because (4.1) can be expgessed in a form involving only two

combinations of the coefficients, namely
T = E(o,e)e - L(o,e) , (4.17)

where the definitions (4.9), (4.16), are used. That is, the
responses described by any of the four tests in Table 1, or in fact
by any prescribed loading history, can only give relations involving
the combinations E(3,e) and L(5,e). Results of more than two

tests therefore provide only consistency checks for the adopted

model.
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le 2 shows the uni-axial relation (4.1) expressed in
measured functions from each of the six possible pairs

described above. Note that E is a combination of

Table 2 Uni-axial relation expressions

Test pair | Relation

CL and CDR s = E (e-F)

CL and CLR (D-F)?;' = Q(e-F)

CDR and CLR (W-D)(é-Q) = (EW-Q) (e-D)
CL and CD F5 = L(&-F)

CDR and CD W(?;'+L) = (EW+L)e
CLR and CD , D(é+L) = (L+Q)e

F, W, E
and the
the sets
directly
The most
are each
Also the
and F

three te

(4.8) given by CL and CDR. The implication of (4.17)
Table 2 expressions is a sequence of identities between

of data functions from different pairs of tests, given

by the definitions (4.5), (4.8), (4.9), (4.13), (4.16).
simple direct expression is that from CL and CD which
described by a single function, F and L respectively.
CL and CDR expression using the combination function E

is convenient. The form (4.17) requires functions from

sts, but with the identity L = EF is simply the CL and

CDR expression.

It

is possible to obtain the simple form (4.17) involving

only two coefficients E(o,e), L(c,e) because the scalar uni-axial
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relation (4.1) allows division by a function of (g,e). In the
tensor form constructed later, such division is not possible,
so the extra cofficient, and separation of the composite
coefficients ; and ; , results in five independent
coefficients. These are necessary to represent the distinct
directional features of the different tensor terms, and in
principle must be determinate by an appropriate set of
multi-axial tests.

Now consider how the strain response to an applied stress
jump - a jump relation - can be inferred from the differential
relation.(4.1) or its equivalent form (4.17). A reasonable
proposition is that the jump relation is the limit of solutions
of the differential relation in which the stress change takes
place over a decreasing sequence of time intervals. Consider

a continuous stress change %% to O in the time interval

ty to t, + 8t, with corresponding strain change eg to e,

then integrating (4.17)

t ot | t+ot t +ot
odt = J E(G',e')e'dt - j L(c'e')dt . (4.18)

%% % %

Assuming that o', e' remain bounded, and L is a bounded
function, the last term of (4.18) is of order &t as &t - O.
Thus,

e
c - Eo = J E(c',e')de' + O(S8t) , (4.19)
- e
(o]

where the argument o' of E runs through the values o_ to
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0. Assume that in the limit &t + O

E=J(e,e 'Eo)' -60=J(e°, e

O

0’ Uo) ’ '.:' (4.20)

which is the jump relation for arbitrary stress juﬁp c_+o0 ,

o
then for bounded E, (4.19) gives
33 _ do _ E[J(e, e, G.),e] = E(3,e) (4.21)
ae de (4 OI le) [ 14 ’ -

showing that E(c,e) is the stress-strain gradient at a point
(c,e) during a jump. The complete jump is given by integrating

(4.21) with the initial condition (4.20)2 at e = e. which is

o'
the integral (4.19) in the limit 6t - O. An analogous tensor
relation jump can also be constructed, and bounded integrals

have implications for the response coefficients ¢l’ ¢2 arising
in the composite coefficient ; . Note that jump relation

data can only provide information about the coefficient
combination ﬁ . ‘

There remains the question of what stress-strain domains
are covered by the different tests when only compressive stress
(6 > 0) is applied. Since the response coefficients are, in
general, functions of (c,e), the relation (4.1) can describe
uni-axial response only for stress-strain histories within their
common domain of definition. 1In constant load tests over a load
range O < 0 < EL , taken ﬁo a strain limit e, , F(o,e) is

defined only between the initial elastic strain ee(E) and the

upper limit, thus

CL: F(o,e), O <0 < 0©

L+ €. (0) sese, FlOe) 0. (4.22)
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For constant displacement tests over a strain range 0O < e < e,
at each constant e the stress is bounded above by the initial

elastic stress jump egl(e) , (4.15), so

o, : (4.23)

CD: L(o,e), ee(E) <es e, L(5,0)

which has the same domain (4.22) as the CL test. 1In the constant
displacement-rate test there is a limit stress—stréin curve,
of the form shown in Fig. 2, which depends on the constaﬁt
strain-rate e = w value. The initial slope for any w is

do

CDR: e - E(0,0) = E(0,0) = Eo ' (4.24)

independent of w (a restriction of the model). By (4.21), the

initial slope of the elastic jump relation o = eel(e) is also

E and hence the limit curve of the CL (and CD) domain is

o
tangent to that of the CDR test at (0,0). Since ee(E) is
monotonic, and the limit stress-strain curve of CDR, Fig. 2,

has a turning point, the CDR domain is more restricted than the
CL domain as O increases. In the constant load-rate test, the
limit stress-strain curve, Fig. 5b, depends on the maximum
load-rate g. Its initial slope is |

. do _ 9(0,0) _ g _ F(0,0) ) _

using the identities implied by Table 2, independent of g, which
is the initial slope of CL, CD, and CDR limit curves. For
G >0, Q0/D<E since F and D are positive, so the CLR limit

curve, though monotonic, bounds a more restricted domain than the
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jump relation ee(g). The CDR limit curve is the most
restrictive.

At best, using the CL and CD tests for G > O, there
is an excluded domain O < e < ee(g) not entered £y the loading
histories of the four above tests. However, a state c >0,
0O < e <’ee(3) , can be reached by unloading histories which
involve some previous arbitrarily small tension (0 < 0); an

illustration is presented in Report (M7).

5. Reduced viscoelastic solid relation

While multi-axial tests can, in principle, determine all
the response coefficients of the tensor relation shown later,
and hence describe the uni-axial response fully, in the absence
of such extensive multi-axial data it is useful to construct
a reduced model which is determined by uni-axial data. That is,
a model which requires only two independent response coefficient
combinations. This cannot, of course, determine the directional
features of a tensor relation, but can be extrapolateé in various
ways to construct trial tensor relations.

First consider the removal of one term in the uni-axial
relation (4.1) by setting ;, @, 8, zero in turn; thgi is,

eliminating the strain-rate tensor, stress-rate tefppbr, and

strain tensor respectively. If ¢ = O, by (4.9)

PT

£ =0@®, E(©,0 =o0. (5.1)

E(5,e) =



s dlipedt il L [ v TR

- 28 -

A

Now E 1is a modulus, in particular defining the jump stress-strain
gradient (4.21), so that E >> 0 for e << 1 which contradicts
(5.1). Hence removal of the strain-rate tensor term_is not
physically acceptable. If @ = 0, then g is infinite and
there is no strain jump for an applied stress jump.éwhich is an
acceptable approximation since strain-jumps are small compared
with the usual creep strains. Bounded E then implies W = F.

F and D are pounded, and identical, (4.5) and (4.13), and

Q is bounded and non-zero by definition. so from the CL and

CLR expression in Table 2, e = F(0,e) for all G(t), not

just T = constant. However, in a constant displacement test,

setting e = 0 in (4.1),

cpD: e =0, (1-e)* 0 = w(T,ele, (5.2)

which implies that T = constant (a solution of the implicit
equation for o at constant e€). incompatible with non-zero L
in (4.15). Hence removal of the stress-rate tensor is not
physically acceptable.

If ; = 0, there is no dependence on the strain tensor,
but dependence on strain invariants remains in the arguments
of ; and & , and induced anisotropy still occurs (SM). Now

by (4.5).,

F(O,e) = O, (5.3)

so that on complete unloading from any stress-strain state there

is the elastic strain decrease but no subsequent creep relaxation



- 29 -

(e

O). A linear viscoelastic solid which exhibits decreasing
strain-rate in time at constant stress, because of the
superposition property always relaxes (e < O) on full or
partial unloading. On partial unloading, O maintained at

a reduced positive level, e = F(o,e) > O when 0 = 0, so
creep continues at a reduced rate. A non-vanishing w is
essential to describe creep relaxation on full or partial
unloading. If a non-relaxing model ; = 0 is an acceptable

approximation, then the remaining coefficients ¢ , ¥ are

determined by any pair of tests in Table 2. For example, from

CL and CDR
v =2, ¢=-2-9-—(—-1;§—)-{(1-e)E—23}. (5.4)
FE 3FE
When w # O, relaxation on complete unloading from a state

in which e = F(g,e) > O requires e = F(O, e—ej) < 0, where
ej is the small elastic strain decrease, trivially satisfied
if w > 0. Relaxation after a small stress decrease, analogous

~

to the linear model, would require significant increase in
for the small stress, small strain decrease. Unloading data can
determine the importance of the strain tensor term with
coefficient 8 .

An alternative reduction of the model is obtained by

restricting dependence of the response coefficients VY, ¢, w,

on o and e . The uni-axial relation (4.1) is the restriction
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of a tensor relation with unit stress tensor coefficient. 1If
the response coefficients have general dependence on the

stress and strain invariants, then the tensor reléﬁion may be
expreséed with unit stress-rate tensor coefficienﬁAwithout loss
of generality. However, making analogous restrictions on the
dependence of the two sets of coefficients leads to different
models, so both will be analysed. The uni-axial relation for

the second normalisation is

(1-e)* 0 - 2(1-e)* 0 e + (l-e) @*E = %—c;*(l-e)é + J»*e (5.5)

~

where the three response coefficients ;*, ;*, w*, are functions
of 0 and e in general, and the ;*, w* terms are each
composites of two tensor terms. Both (4.1) and (5.5) can be
written in the common form associated with CL and CDR responses,

Table 2,

S = E(e-F) , (5.6)

~

with F, E defined by (4.5), (4.9) for (4.1), and for (5.5),

~ ~ oy ~ ~
S (LI - AR ._.{";*g . ure }/E : (5.7)
2(1-e)? l-e (1-e)®

Consider a requirement that creep relaxation takes place

on complete unloading from a state (31, e;) at time t,. Thus

t>t :5=20, é&=F(Oe) =-£f(e) <0, e(t]) =ey ,  (5.8)
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where e, - eI is the elastic strain decrease. While the
strain-rate -f (e) is a function only of current strain, the

initial value eI depends on the loading historyito reach the
+

state (31'-61) and the elastic jump from e, 'tQ; e, . For
(4.5), (4.9),and (5.7) respectively,
fle) = yolugle . w(o.ele , (5.9)
5(1-e)¢ (O,e) (1-e)* E(0,e)¥ (O,e)
fle) = o 2202)e . _wilOele (5.10)
5(1-e)¢*(0,e) (1~e)® E(O,e)

Thus the relaxation function f(e) determines the ratios
;(O,e)/;(o,e) and a*(o,e)/;*(o,e) or ;*(O,e)/é(o,e)
evaluated at zero stress only. 1In practice the function F(O,e)
cannot be determined by an initial zero load test, so a relaxation

test completes the determination of F(o,e) if and the

+
€1
final strain encompass the required range.

Suppose now that w/ is independent of o , hence equal
to w(0,e)/$(0,e) determined by £(e), which therefore provides
a third relation on the response coefficients. Then by (5.9), (4.5)
(4.9), 3

~ ~ ~ —g
we = %¢(1—e)f, Y = A2 -
(1-e E - 2(l-e)o

14

(5.11)

_ _(1-eP5{(1-e)E - 25}
26F + (F+f){(1-e)E - 20}

ojw
© >
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Similarly, w*/¢* is then independent of o, and direct from

(5.10) and (5.7), or by the transformations

yr =z, or =% w*t =% , (5.12)
1% v v
used to obtain (5.5) from (4.1),
36% = (1-e){(l-e)E - 20} , w*e = (1-e¥ {(1-e)E - 25}f,
(l-e)o ‘
Since elastic strains associated with a stress jump o are
infinitesimal,
g <<1 , (5.14)
E

then neglecting O/E compared to unity gives the approximations

of (4.9) and (5.7)4,

P3¢ . _30* (5.15)
2(1l-eyP ¥ 2(1-e)

which imply

6 >> 0V , o* >> 0 , (5.16)

and in turn-the approximate expressions of (4.5) and (5.7)2,
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A

e T ~ PRY — _
(%we) o we _ (1 e;Aow* w*e (5.17)
§¢(l—e) §¢*(l-e)

F =

The corresponding approximations of (5.11) and (5113) are

35 - (-efo D= 9 _ e = {1-e)® of
2= “F+g 0 VT (F+£) E o We= F+f ! (5.18)
36% = (1-ePE, v ={EDE | Yue = (1-ep BE . (5.19)

While total strain e may be small, it is not necessarily
negligible compared to unity, and in any case there is no further
simplification of the forms (5.18), (5.19), by neglecting e
compared to unity. Note that (F+f) must approach zero like
0 or faster as o0 + O for bounded @*.

The three response coefficients in both relations (4.1)
and (5.5) are determined by the two types of loading response
(CL and CDR) and the response on complete unloading, provided
that ;/$ (and ;*/$*) are independent of 0 . Until this
is shown to be incompatible with multi-axial load data it is a
useful trial model, with the forms (4.1) and (5.5) still
equivalent. Now consider the further simplifications (Report M8)
of separable dependence in ;, ; « and @*, ;*, respectively,

compatible with the ratios independent of o . Thus
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8 :
I

4, @0 _(e), we = 30, (5o (e) (1-e)E(e) , (5.20)

-

¢*

$2(E)0_*(e), wre = 3 62(@0k(e) (1-e)E(e) . - (5.21)

~

The corresponding jump gradients E from the approximate

expressions (5.15) are

~ 3¢_(0)d_(e) 30*(0)d*(e)
E= —>>5 = g € , (5.22)
2(1-e)? ¢y (0,e) 2(1-e)?

~

of which the first expression is not separable when V¥ is
unrestricted, while the second expression is separable. That is,
the two models (4.1) and (5.5) are distinct, and this feature

of % may decide which provides the more plausible approximation.
It has been shown by model examples (SM) that variation of é

with e has little effect on the CDR response, and so a simplified
separable form é = ﬁ(g) may be an adequate approximation,

supporting the expression (5.22)2 and relation (5.5). From

(5.17),
2 '— -2 py
P4f(e) =qlel 8. (eeloyiloie) (5.23)
St (€) ¢, (o) 5 oo le)o (o)

requiring F + f(e) to be separable for the relation (4.1), but
not restricted for the relation (5.5) when &* is unrestricted.
Hence the relation (4.1) with separable coefficients (5.20)
requires that F(o,e) + f(e) is separable, while the relation

(5.5) with separable coefficients (5.21) requires that E(o,e)
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is separable.
Further simplifications are given by the special cases of

(5.20) and (5.21) when all o dependence is eliminated:

~

s (e),  we = 3¢ (e) (1-e)f(e) , (5.24)

¢

¢*

s2(e), wre = 3pi(e) (l-e)f(e) . (5.25)

~

With (5.24), E is unrestricted, (5.22)1, but F + f(e) is
linear in 0, (5.23)1, while with (5.25), E = E(e) , (5.22)2,

but F is unrestricted. 1In particular, if the approximation

E = constant = E_ is adopted, then

3~ R - EO[F(E,e)+f(e)3
So* = Ec(l—e)z , Wwke = Eo(l—e)sf(e), Yy = — + (5.2
o

which, with the relation (5.5), may be a useful simple model in
view of the small influence of ﬁ(e) variation in CDR response
illustrations (SM).

Finally, let us examine the properties of the strain-rate
- f (e) on complete unloading, defined by (5.8). It is
necessarily independent of the stress 31 before unloading
in this model, though the initial strain eI depends on previous
loading history. If appreciable dependence of the strain-rate
on previous stress is observed in experimental programmes, then
this differential model with response coefficients depending on
current stréés and strain only is not satisfactory. Suppose that

the unloading responses determine a consistent f(e). Let
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e + e as t -+ o where

0O < e < eI, (5.27)

[}

so that the final strain is less than that at time %I ¢« Since
f(e) < 0, and is still a compression; that is, assume that a
compressive stress history followed by stress removal does not

produce a stretch. Now

et et
_ 1 de’ 1l de' _ .
t-t = Je T J e st (5.28)
so £ l(e) is integrable at eI to obtain finite t for a

strain e such that e < e < eI . The non-relaxing case

- _+

e e . £f =0, is excluded. Further, the unbounded integral

necessary for the finite limit e_ requires f'l(e) to

be non-integrable at e , and since (5.28) applies for all
+ -1

€1

at e = 0, but integrable at all eI > 0. Thus e_= O, soO

>0, and hence all e_ > O, f “(e) is non-integrable

this model requires complete relaxation given sufficient time,
if non-relaxation is excluded, which is also a feature of linear

viscoelastic solids; partial relaxation is not possible. Hence

o, f(e) >0 fore >0, fle) mfoen (n 21) as e » 0. (5.29)

o
n

~ ~ ~

The case n =1 is givenby w, ¢, or w*, ¢* bounded and

non-zero as e + O. A simple example is

fle) =f e, e-= eI exp[-fo(t—tl)] for t > t; ., (5.30)
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which couples with the constant E approximation (5.26)

to give
*
3o = (1222 , w* = Ef (1-e)® , ¥ = ——2, (5.31

(¢}

where the stress coefficient ;* in the relation (5.5)

depends on the constant load response F(o,e). If E, and

fo can be estimated from limited stress jump data and
unlocading data, then a comprehensive CL programme will determine

F(o,e) to complete the uni-axial relation (5.5).

6. Viscoelastic tensor relations of differential type

A brief summary of the frame-indifferent differential
tensor relations of fluid and solid type developed by (MS, SM)
is now presented. These are the three-dimensional models
from which the relation (3.1) and (4.1) in uni-axial stress
are derived. The limit to which a complete uni-axial
description determines the three-dimensional response is
shown, and in turn the requirements of a multi-axial load test
programme sufficient to determine the three-dimensional model
are indicated.

In both fluid and solid models the ice is assumed to be
incompressible, which is a restriction on the possible
deformation, and so the mean pressure is not determined by
the deformation. The differential relations therefore connect

the deviatoric stress and appropriate time derivatives to
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strain-rate and strain-acceleration or strain and strain-rate
respectively. Let ¢ denote the Cauchy stress tensor (with
diagonal components positive in tension to follow the usual

convention, so a uni-axial compressive stress o = = 0;,

for example) with rectangular components °ij (1,3 = 1,2,3),
and S the deviatoric stress defined by
S=o-3(tro)l, trs=0. (6.1)
If v(x,t) is the spatial velocity field with components v,
in rectangular coordintes Oxi, the rate of strain tensor
D is defined by
1 avi avj
Dij =3 3;; + axi ’ Il = tr 9 = divv = O, (6.2)

where the latter constraint imposes incompressibility. o, S.
and D are frame indifferent tensors (Truesdell 1966). The
frame-indifferent strain-acceleration is given by the

Rivlin-~Ericksen tensor

al?) = 2D + 40P+ 2(DW - WD) , (6.3)

~

where the rotation tensor W is defined by

3 oV, V.
W, = =|—= - =—3{ . (6.4)
ij 2|ox. Bxi

Similarly, a frame-indifferent deviatoric stress-rate is
given by
s =5 +sm+w + (D-WS . (6.5)

The first principal invariants of A(z) (1) are given

~

and S
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by

tr 5(2) = 4tr 92 . tr §(1) = 2tr (SD) , (6.6)

while the non-zero second and third principal invariants

-

of D and S are

-~

1
Iz=-§-tr92, I, =detD ,
(6.7)
J. =1 ¢r s? J. = det S
2 32 S 3 S .

The frame-indifferent fluid relation, necessarily
sy
isotropic,which reduces to the uni-axial relation (3.1)

incorporates only linear dependence on the tensors S, S(l),

-~

and A(Z) , but includes the general isotropic tensor function

of D. Thus

-~

(1 _ 2
¥S + Uyls 5 tr(sp)ll

= ¢19 + ¢2[92 —-%Izgq + ¢3[§ + DW - WDl , (6.8)
where the D’ term of §(2) is included in the ¢, term,
and the response coefficients wl' w3, ¢l’ ¢2, ¢3, depend
only on invariants of the various tensors. To obtain the
necessary uni-axial forms (3.5) and (3.12), some dependence
on the rate invariants iz and 32 is required, as well as
on 12, 13, J2, Jj. In general, the response coefficients
depend on the two independent strain-rate invariants and the

two indepéndent stress invariants, in contrast to the dependence

of wl. w3, ¢1. ¢2. ¢3 on one strain-rate r and one stress O
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in the uni-axial relation (3.1). That is, uni-axial response
cannot separate dependence on the two strain-ratg invariants
and the two stress invariants. Furthermore, thei ;l and &2
terms of (3.1) appear only as a composite term, whereas the
¢y and ¢, terms of (6.8) represent the distinct dependence
on D and on 92 , which are non-proportional tensors in
general. By construction, the trace of each tensor term in
(6.8) is zero, and each tensor is symmetric, so expressed in
principal axes in the absence of rotation there are only t&o
independent relations. The third relation is the incompressi-
bility constraint eliminated by using deviatoric (traceless)
tensors in (6.8). The uni-axial reduction (3.1) is a special
case of the tri-axial stress relations constructed later.

The frame-indifferent solid relation which reduces to the

uni-axial relation (4.1) incorporates only linear dependence
S(l)

~

on the tensors S, , but includes a general isotropic

tensor function of D and a general isotropic tensor function
of the Cauchy-Green strain tensor B3 that is, the solid is

isotropic in the reference configuration. If xi and X,

denote reference and current coordinates of a particle, then

the deformation gradient tensor ¥ is given by
Bxi
F,. === (6.9)

9X.,
ij 5

and
B = FF . (6.10)
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The principal invariants of B are

K, = tr B, K

L ; 5 = %{(tr B)2 - tr B2}, Ky = J? =det B =1, (6.11)

£

where the latter is the incompressibility constraint, so only

Kl and K2 are variables. The tensor relation is

L]

(1) _ - 2 _ 2
s+ s - 2 er(sDIL) = 0yp + 6,007 - 5 T,1)

-1 2 _ log2 _ o
+ w [B - 5 K17 + w,[B S(x2 - 28,11, (6.12)

where the response coefficients V¢, ¢l’ ¢2, Wy o and Wor

are assumed to depend only on the stress and strain invariants
Jz, J3, Kl' and Kz. The form leading to (5.5) is obtained by
dividing throughout by ¥ , which supposes that the §(1)

term is present. Note that any éonfiguration which is a
distortion of the isotropic reference configuration is
anisotropic (SM). Again the trace of each tensor term is

zero and only two independent relations are obtained. 1In the
uni-axial reduction (4.1), a special case of the later tri-axial

relations, the ¢ and w terms are composites of the ¢l' ¢2

terms, and terms respectively, so (4.1) cannot

“ir @2
separate the D and D? dependence, and B and B2
dependence. Dependence on four invariants is also reduced
to dependence on the single stress © and single strain e,

so dependences on two stress invariants and on two strain

invariants are not separated. To derive the tensor jump
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relation analogous to (4.2) as a continuocus limit of the
differential relation (6.12) with ¢2 independent of

invariant rates, it was shown (SM) that

¢2 =0. * (6.13)

A

Then ; is the reduction of ¢l' and only the w term is
a composite of the Wy and W, terms.

Since both (6.8) and (6.12) involve two independent
scalar relations, the test response required to describe the
dependence of the response coefficients on two stress and two
strain (rate) invariants, and to separate terms in the |
non-proportional D and 92 and B and §2, must incorporate
two indpendent deviatoric stress components and corresponding
strain (rate) components. A conventional tri-axial stress
test does not provide two independent deviatoric relations (M),
but a true bi-axial stress test does (M2, M5). Both will
be obtained from the tri-axial stress analysis, and also the
invariants domains covered by compressive stress tests. Shear
tests yield direct properties of the deviatoric relations,

but appear to be less practical.

7. Multi-axial loading geometries

Both the fluid relation (6.8), necessarily isotropic,
and the isotropic solid relation (6.12), have common principle
axes for all the terms in the absence of rotation, and can be

represented by three scalar principal components. Only two
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of the component equations are independent since both
equations have zero trace; that is, the sum of the three

principal components is zero. In principle axes

-

94 o) ) Sl o) O
) o 03 0O o) S3

1 = e
- 3(01+02), Sy = (Sl+Sz), (7.2)

= - 31 = i 2 2 _
p = 3(c;1+o‘.2-i—c:3), J, = [01+022+c3 (0203+o301+0102)],
(7.3)

=1 — - —r - —— -
= 37[(201 oy 03)(202 o4 03)(203 04 02)].

This loading geometry is described as tri-axial stress,
abbreviated to TS, when 0,005,045 are independent. Only two
principal stress deviatoric components are independent however,
and for practical purposes we would like to obtain two independent
deviatoric components with only two principal stresses
independent, both for control and measurement. p is the mean
pressure, and J2, J3 are independent shear stress measures.

Supposing the test is performed with zero rotation,

2
d; © o) Xy o2
w=0, D=1]0 d o} , B = o A (o} ' (7.4)
O 0 =(d;+d,) 0 0 A%
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where dl' d2 are principal strain-rates, and Al,xz , are

principal stretches. The corresponding invariants are

= a? + a2 - - :
I2 dl + d2 + dldz ’ 13 dldz(dl + dZ)f
i (7.5)
= )2 2 -2 ,-2 - 1212 -2 -2
Kl = Al + Az + Al Az . K2 = xlkz + Al + 12 .

The fluid relation (6.8) yields the two independent differential
relations

: 2
wlsl + w3[Sl + E(Sldl - S,d, - s,d

2d; = 54, = 25,d5)]

_ 1 2 _ 2 _ 3
= ¢ldl + 3¢2[dl 262 2d1d2] + ¢3d1 ’

(7.6)
2 2
wlsz + w3[82 + 3(8262 - szd1 - 8162 - Zsldl)]
_ 1 2 _ 2 _ 3
= ¢ld2 + 3d>2[d2 261 Zdldzl + ¢3d2 '
where the response coefficients depend on 12. 13, Jz, J3,
and their time derivatives in general. The solid relation
{(6.12) with restriction (6.13) yields
. 5 -5, da
Sl-rw[Sl + §(Sld1 - SzdlA- zszdz)]
_ 1 2 _ y2 _ y72,-2 1 4 _ .4 _ ,-4,-4
= ¢ldl + §wl[2xl Az xl AZ 1+ §w2[2A1 Az Al Az 1,
(7.7)
> 2
S, + VIS, + 3(5,4, - S,d; - §;8, - 28,4,)1
= 1 2 _ y2 _ 3=2,-2 1 4 _ .4 _ ,-4,-4
= ¢ld2 + §wl[2A2 Al kl Az ] + §w2[2A2 Al Al Az 3,

where the response coefficients depend on K., Kz, Jor and J,.
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~axial stress refers to the case o

3

that is, to a transversely isotropic stress geometry (in the

plane transverse to the axial stress o,), which has two

independent stresses

o, and o,, and so designated bi-axial

stress in (M). Here the precise description, abbreviated to
TIS, is introduced. Now
=25 - = = -1
‘ (7.8)
3
p= - %(ol+202), J, = §(ol-ozf, Jy = g%(ol—oz)s = % 2(J2/3)§

so there is only one
dependent deviatoric

only one independent

independent deviatoric stress and one in-

stress invariant. Similarly, there is

strain-rate d and one independent stretch

1
Al' with
- 2 = - _ 1
d3 = -(dl+d2) d2 => d3 = d2 = 2dl .
_ 4=1,-1 _ _ _ 1"k
A3 = Al Az = Az‘— A3 = AZ = Al ‘
— 332 = 1a3 _ 5
Izi- 743, I3 =34] = :2(12/5)2 ,
K. =22 + 2278, k., = 2x, + 272
1 1 ) 2 1 1 '
s0 K1 determines Al and hence determines Kz. With the

identities each term

of (7.6), is a multiple (-3) of the

corresponding term of (7.6)1, and similarly for (7.7), so only

one independent relation is obtained.

Uni-~axial stress, abbreviated to US, is given by setting
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3

<

and the strain-rate and strain expressions are unchanged. The
one independent relation of (7.6) and that of (7.7) have common

forms for TIS and US, namely
V)Sy + ¥3l8; + 51931 = 6,8 + 505d7 *+ 03, (7.11)

-2

1) . (7.12)

b - 2 2. -1 _2_ 4_
sl + w[sl + Sldlj = ¢ldl + iwl(xl Al ) + 3w2(kl A
where Sl is given by (7.8)l and (7.10)l respectively. The
US relations (3.1) and (4.1) are recovered by using the

transformations

6 =-0, s r=-d), ue=ull-(-e)ll-e) + w,[1-(1-e)®. (7.13)

together with thé relations (2.2)3 and (2.3). The paths in the
invariants domains, Jy = 2 2(J2/5)3/2 and Iy = 2 2(1213)3/2,
are also common to TIS and US, so no extra freedom is obtained
from the two independent stresses 0,., O, of TIS. 1In fact,
with both o, and o, negative (compressive), the ranges
of Joe J3 for given o, are maximum when o, = 0; that is,
for US.
Finally, bi-axial stress, abbreviated to BS, will refer

to the case of independent axial stress dl and one lateral

stress 02 , with the second lateral direction stress free,
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(7.14)

= -1 = 1i52452- = L - -
p= 3(01+02), J, = 3(01+02 0102), Jy = 27(ol+02)(01 202)(20l 9,

so that Sl and s, are independent, and I,y and J3 are
independent. Also the two strain-rates dl and d2 are
independent, and the two stretches Al and Az are independent.
Hence (7.6) and (7.7) each yield two independent differential
relations between ol,cz,él,éz,dl,dz, and él,éz. or Al,xz,
respectively. In (7.6) the ¢l and ¢2 terms are independent,
and in (7.7) the wy and wy terms are independent, not lost
in BS, so dependence on D and on 92 is distinguished, and
dependence on B and on §2 is distinguished. Thus BS
provides two geometrically independent components of the tensor
relation, and with incompressibility completes the
three~-dimensional description of an isotropic material. If
anisotropic solid models are required, then BS with respect to
sufficient different reference axes will be necessary to provide
a full description.

The analysis of constant stress and constant strain-rate
responses in BS for the fluid relations (7.6) may, or may not,
be a generalisation of the uni-axial analysis detailed in
section 3..- There the non-monotonicicy of strain-rate and stress

respectively gave rise to two-branch solutions of the
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differential equations with implications for the response
coefficients. We have no knowledge of the response shapes
in BS at present, so cannot proceed along the same _lines.
In principle, this truly two dimensional response must
distinguish the D and D> terms, but it cannot be stated
whether the response overdetermines the model as in US, or
underdetermines‘the model. If the latter, then further types
of test in BS, independent of constant stress and constant
strain-rate responses, would be required, or, alternatively,
a reduced fluid model constructed. However, the US response
suggests that the model is not underdetermined by these tests.
A BS analysis of the solid relations (7.7) has not yet
been performed, but may be a more direct extension of the US
analysis since two-branch solutions are not involved. However,
replacement of time by strain in the functional descriptions is
not unique, since there are now two independent strain components,
but axial strain would be the first choice.
It is possible that constant lateral strain rate (62 or
iz) may not be practical, and a mixed loading of constant dl
with d2 = O, or constant Xl with 12 = 1, representing a
lateral constraint, may be prefered. The associated analyses

of the BS relations will be more complex.

8. Dependence domains in stress invariants space

The response coefficients in the tensor relations (6.8)

and (6.12) depend on the shear stress invariants J2 and J3,
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and in (6.8) on their rates and on strain-rate invariants

I, and I3 and their rates, and in (6.12) on the strain
invariants Kl and KZ’ In practice, tests wiliibe restricted
largely (or entirely) to compressive stresses, 01 < 0,

o., s O, o4 < 0. This limits, in general, the domain of the

2
(J2,J3) plane covered by each of the configurations US, TIS,
and BS, and in turn the domain in the (12,13) plane or

(Kl'Kz) plane, so that response coefficients may not be
determined over a range of their arguments sufficient to cover
all practical load histories. The corresponding situation for
dependence on mean pressure and on shear stress invariant is

also discussed and compared.

Consider the compressive stress restriction
o,(t) £ 0, o,(t) =n(t)o,(t) <0, nit) 20, (8.1)

together with

gsSt: n=0, 0,0 =0, TIS:

3 02 I3 BS: 03 =0 . (8-2)

°3
It is convenient to express the invariants as functions of o4
and 1 with each constant n denoting a ray in the (01,02)
plane (fourth quadrant). In US only a single ray o, = O (n=0)

is covered, and J2' J3 are given by (7.10) with o, < O ,

1

. _ 1 2 - 3/2
Us: J2 = 30; 2 o ., J3 = 2(J2/3) £ 0, | (8.3)

so only one branch of the curve in the (J5,34) plane given

by (7.10)4 is realised, shown in Fig. 6. From (7.8), for TIS,
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3

1 2 >
TIS: J., = -§oi(1-—n)2 20, Jy= oi(l-n)" =12(J2I3) as n<l, (8.4

5 =
so both branches of the curve are realised by cé > 0y and

o, < 0y respectively, and the upper branch defiﬁes the
uni-axial tension configuration. It is, though, only one

curve in the (J2,J3) plane, Fig. 6. In contrast, for BS (7.14)
yields

03
02(n2-n+l) 2 0, J, = 5%(2n3—3n2-3n+2). (8.5)

Wi

BS: J2 =

with independent oy < 0O and n 2 0. Define

= _ - 2_3 -1} 2
J, = = =7+ (n-%)° ,
1
_ 27J3 9
3, = = - (=512 - (n-%)21, (8.6)
3 203 4
[»]
1
J 9J
k(n) = —= = —3 , k(0 =1,
J2 2J20l

then (8.6), ; imply a relation 33 = h(32) obtained by
’
eliminating n , not necessarily single-valued. This

corresponds to

J = h V4 f (8.7)
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so that J3 depends on both Jz and ol in general. 2
single curve in the (JZ'J3) plane is obtained if, and only
if, (3J3/3ol)lJ2 = 0; that is, at fixed J, tﬁere is one
value J3 though both Jz and J3 vary as of varies.

Then h satisfies the diferential equation

= = 3, =
th (J,) 2}1(J2) ’ (8.8)

with solution
J, =K J (8.9)

trivially satisfied by the TIS relations (8.4), but clearly not

a property of the BS relations (8.6)l 9t for which, in
'

particular, at n = %, 32 = % ' 33 = 0 . Hence (8.5) determines
a finite (J2,J3) domain for a given range of o4 €0, n=z=0.

Both 32(n) and 33(n) are symmetric about n

and so also k(n). 32(n) has a single minimum % at n = %
)

i
[
-
N
-
w

and is strictly positive. 33(n) has zeros at ny (i

and a maximum at nM and minimum at nm, given by

(n1.n2,n3) = (=1,0°5,2), ny = %(1+3%), Np = 4%(3%—1), (8.10)
with
Ty = 3@ Ty = 3@, (8.11)
and k(n) has a maximum k, at n, and minimum k= at ng
given by
ng= - O-1, ky = 1-02 , n_2~ 11, k= -1-02. (8.12)
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Also

o) ~ n? , 33(n) vn®, k(n) vn, as n e, (8.13)

Figure 7 shows sketches of 32(n). 33(n). and k{n). Specifying
n determines 32, 33, k, then specifying % determines
J

and J so values of the test parameters GyeN determine

2 37
a point in the (J2,J3) plane. If J, and J3 are specified,
then a 6-tuple equation for n (with probably more than

one real root) must be solved numerically, then oy determined,
but this does not arise in data correlation.

It remains to determine the domain of the (J2,J3) plane,

Fig. 6, covered by compressive BS tests oy < o, 2 0.

3

n
While J., takes all values greater than 33(2)" - %(3!5 - 1)
as n is varied, and 32 all values greater than %

, with
J3 = k(n)Jz, J2 and J3

between the expressions (8.5) shows that

depend also on ;- Eliminating oy

= - 3/2
Jy = Zk(n)(Jz/B) ' (8.14)

so that at fixed stress ratio n , hence fixed k, as ol

and © are increased accordingly from zero a curve in the

2
(J2,J2) plane similar to one of the TIS branches is obtained,
the choice depending on the sign of k. Negative J3
corresponds to k > O, and approach to the limit line
J

+ 0, J., < 0 requires large k , hence large n = 02/01,

2 3
while o, . and oy approach zero. 1In practice a limit

curve of the form (8.14) may not apply as J2, J3 + O since
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the large 1n may not be maintained, so Fig. 6 shows only an
estimate of the limit curve for negative J,. It is clearly
much closer to the limit J2 + O than the TIS, QS compression
curve. £

Positive J3 Corresponds to k < O, and here there is

a precise limit kmcs - 102, with limit curve

- - 3/2 ) 2y 3/2
Jy = - 2k, (J2/3) /e 2:04(J,/3) ' (8.15)

which extends the domain only slightly beyond the TIS, uni-axial
tension, branch, Fig. 6. Since values of k in the range

kn < k £ 1 occur for two values of n , the same curve (8.14)

is repeated, and consistency of the corresponding data is necessary
to justify the assumed model. 1In applications which have
approximately a compressive plane stress configuration, the

domain covered by BS data is all that is needed, and if there

is a principal stress in the third direction which is compressive,
the corresponding (Jz,J3) domain will not extend to the tension
limit of BS.

While the.incompressibility approximation used in the model
relations will be good in many applications, ductility may be
influenced by mean pressure. For example, the constant
strain-rate response in uni-axial coﬁpressive stress may exhibit
an increased peak stress Oy if conducted under a superposed
isotropic pressure. That is, deviatoric (shear) response, may be
influenced by mean pressure, even though the pressure is not

determined by the deformation history. To determine dependence

on the three stress invariants p, J2, J3. will require general
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tri~axial stress data, the response to three independent
stresses. Alternatively, if response only to two independent
stresses is practical, this can be interpreted by dependence
of response coefficients on pressure and one shear stress
invariant in place of two shear stress invariants. The

additional dependence on 12' I3, or Kl, Kz, can be retained,

since I, = tr D=0 and Ky =det F=1 by incompressibility.
Consider dependence on (p. Jz), and the domains of the.(p, JZ)
plane covered by US, TIS, BS, for compressive stresses which
imply p 2z O.

Thus, with ol < 0, 02 = nol <0, from (7.8) and (7.14),

UsS: p= - %01 2 0, Jz = ']3—.012_ = 3p2 ’ (8.16)
TIS: p = - %—ol(l+2n) 20, J,= %Oi(l-n)z = u(m)p? ,
(8.17)
. _ l-n,2
BS: p = ~- %—ol(un) 20, J,= %ci(l-nmz) = v(n)p? ,
(8.18)

- 2
\)(n):é..(..:.x:__rl".‘_?__)-go.

(1+n)

Again US covers only a single curve in the (p, J2) plane, but
both TIS and BS cover finite domains as the ratio n 1is varied.
However, neither TIS nor BS can realise a uni-axial tension

configuration J, = 3p?, p= - %ol < 0, since p 2 0 for all

n=20, 0, <O in (8.17) and (8.18). In contrast, both TIS and

1
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BS cover uni-axial tension in the (J2, J3) plane.

For TIS, from (8.17), as (-ol, -02) are increased from

2

zero at fixed ratio n , a parabola J2 = up is covered in

the (p. Jz) plane, Fig. 8. Now

O0<n <1
dy <
3-%20 as n>1 '
(8.19)
_ - = 3 o
u(0) = 3, Upin = (1) =0, w=>7 a n->=,

so the range O < py = 3 4is covered by O < n<1 , and the
range O <uc< % is repeated by n > 1. Consistency of the

corresponding data is required to justify the (p, J2)
dependence in the assumed model. Thus TIS covers a domain in
the (p. J2) plane bounded by the positive p axes and limit
parabola Jz = 3p?, shown in Fig. 8. The limit parabola is
the uni-axial compression configuration.

2

For BS, from (8.18), the parabola Jy, = VP is covered

at constant n . Now

%3 § 0 as O = <1 '
n n>1

M (8.20)
Vo) =3, v, =v(l)=3, v=>3 as n>=

so0 the entire range % < v < 3 is duplicated by n <1 and
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n > 1, requiring consistency of corresponding data. Thus BS
covers a domain between the limit parabolas J2 = %pz and

J, = 3p2 , shown in Fig. 8, which is more restriéﬁed than that
covered by TIS, in strong contrast to their cove:?ge of domains
in the (J,, J3) plane. Of course, TIS still yields only one
independent deviatoric relation, while BS yields two, but the
excluded domains in BS, Jy > 3p? , J, < %pz . are of practical
significance. It has been‘shown (M5) that allowing axial tension
o, > 0 with lateral compression 0, < 0, n < 0, extends the
domains to J, = 3p?2 (p < 0) for TIS and BS, but still excludes
the important domain O < J2 < %pz for BS. Complete coverage

for BS requires both axial tension and lateral tension.

9. Compressibility and dilatancy

In applications where volume changes are significant, a
volume change model must be introduced, and the deviatoric
relations constructed for an incompressible material must be
modified appropriately. One approach is to adopt the same
shear description by replacing the strain-rate, strain-acceleration
or strain, in the differential relations (6.8) and (6.12) by

their deviatoric parts

1, ‘1;3‘ = J’2/3g . (9.1)

w]]
W
e

=p-30,1, B=D-3h

then add an independent volume-change law to relate I, or J

to stress. Now
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by mass balance, where ¢ is density with reference value Por
and J = det F measures the density decrease factor, and

Il = tr D measures the rate of increase of volumé per unit
current volume. In (6.8) and (6.12), the correspéhding

invariants for § and E are

= _ - _ _..__-]__ -a __1_2 - _ —
I1 = tr 9 =0, 12 = 2tr P = 12 611' I3 = det P ’
(9.3)
= _ = _ ~2/3 = _ 1 =v2_.v 21 1-4/3 % - T =
Kl = tr B -.J Kyv K2 = 2{(tr B)*~tr B 1= 3 Kyr Ky = det B = 1,

so that I, and il enter the deviatoric fluid relation (6.8)
explicitly, and Il and J enter the deviatoric solid relation
(6.12) explicitly.

Elastic compression relates density to the stress invariants,
mean pressure and the shear stress invariants, to satisfy frame

indifference. Thus

p=g(piJdyedy), I = —Klé + szz + K333 , 1= 9/0 (9.4)
where the compressibility Ky and shear-rate coefficients depend
on p,Jz,J3. If p depends on pressure alone, then Ky = Kg = 0
and Ky = Kl(p). An infinitesimal volume change approximation
then gives constant Kqe The density relation (9.4) is reversible,
and implies density jumps occur when jumps in the stress invariants
in the argument of g are applied. When (9.4) is added to

the Podified (6.8), stress~acceleration terms are

L d

introduced through il and D , but are zero for constant stress

and constant strain-rate relations. il does not occur in the
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modified (6.12).
A model for dilatancy, the opening of pores and cracks

under maintained shear stress, is given by
I, = h(Jz,Jg) 2 0, (9.5)

defining a constant rate of volume increase per unit volume
at constant deviatoric stress, and a simplified form excludes
dependence on J3. Similarly, if the ice has bulk viscosity

which depends on pressure

I, = -(p) <O, (9.6)

giving a constant compression-rate at constant pressure. (9.5)
and (9.6) may be combined additively, or Il expressed as
a function of J2,J3, and p. However, there must be bounds

on the maximum and minimum densities, and P independent

Py
of load duration but possibly depending on stress level.

Approximate generalisations of (9.5) and (9.6) are
Il = q(J)h(J2'J3), Il = -q(J)2(p) ., (9.7)

or some combination, where

M m (9.8)

¢ > O for JM < f < Jm

O for Es<J and E =24
q(g) =

controls the permitted density range and the rates of change

as the limits Jy = po/oM and J = po/pm are approached. The

relations (9.7) are differential equations for J when I1 is
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eliminated by (9.2)3. No density jumps occur when stress jumps
are applied in the models (9.5) - (9.7).

The response coefficients of the modified (6.8) and (6.12)
may also depend on I, (or J) and p, so that théee independent
stress loading data is regquired in general. We can though
investigate how the interpretation of US, TIS, and BS response
is affected by volume change. In US, p = -%ol = -% Sl so that

p and S1 cannot be distinguished, though dl and d are

2
independent, and hence 31 and I1 are independent. It is
therefore possible to relate I, to p oOr to J, if such
single dependence is assumed, but not to distinguish the possible

dependences. In TIS, p = -%(cl + 202) and Sl = %(cl - 0.,)

2
are independent, and 31 and I1 are independent, so that a
volume change relation can be separated from the single

deviatoric relation if dependence on only one shear stress
invariant in addition to pressure is assumed. In BS, J2 and

J3 are independent, dl' dz, and Il are independent, but only
two of Jz, J3, and p can be independent since only two stresses
oy and o, can be prescribed arbitrarily. Thus, for a

dilatancy model (9.5) or (9.7)lwith no dependence on p, and
with deviatoric response coefficients independent of p, the

BS responses can be usgd to determine the deviatoric response

over the appropriate (J2, J3) domain, then TIS used to

determine the dilatancy response. Here the BS and TIS

configurations provide complementary data.
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10. Viscoelastic integral relations

Constitutive relations of the differential types proposed
here incorporate histories of deformation and stress explicitly
only through rates of change at the current timei The current
stress for a given deformation history is obtained, though, as
the solution of a differential equation in time with the
integration starting from some initial instant, so there is
implicit dependence on history. This arises because stress-rate
is included in the differential relation, whereas conventional
laws of differential type express stress explicitly in terms
of deformation rates. Similarly, the current deformation is
obtained as the solution of a differential equation for a given
stress history. 1In order to describe the typical responses of
ice in uni-axial stress, it is necessary that the response
coefficients - coefficients of the various tensors = depend
on both stress and strain or strain-rate through tensor
jnvariants for a fluid relation and isotropic solid relation.
Even the most reduced solid model left one coefficient
depending on both stress and strain. Constructing practical
uni-axial test programmes to obtain data over the required
stress-strain or strain-rate domain is difficult, and this
difficulty is compounded in the multi-axial tests to determine
simultaneous dependence on two stresé and two strain or
strain—ratg invariants.

A more general description of viscoelastic history
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dependence is through integral relations which express current
stress explicitly as integrals of the strain history, or
current strain as integrals of the stress history. The integral
kernels therefore depend only on strain history%or stress
history respectively, and current time, and funétions of stress
and strain combined do not arise. Given an hereditary integral
of strain-history to determine the uni-axial stress, calculation
of the strain-history for a given stress history is by solving
a Volterra integral equation in time for which simple
numerical marching algorithms exist. Integral equation solution
in three dimensions should be numerically as easy, Or easier,
than corresponding differential equations. Similarly, an
integral expression for stress can be directly entered into
the equilibrium equations for boundary-value problem
formulation, yielding simultaneous integro-differential
equations in place of higher order partial differential
equations arising with differential operator relations.
Development of integral operator relations looks an attractive
programme, both to describe the viscoelastic response of ice
and to improve numerical solution of boundary-value problems.
There is a well established theory of linear viscoelasticity
in which the integrals are convolutions with kernels (weighting
of the past strain or stress) functions of time difference
only. Together with the linearity (superposition), this allows

direct inversion between the strain and stress history

formulations, so that either formulation uniquely determines
the other. Furthermore, one constant strain test determines

the stress formulation; that is, the creep function of time
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which is the kernel; and one constant stress test determines
the strain formulation; that is, the relaxation‘function of
time which is the kernel. The creep function ané relaxation
function, by the inversion, determine each other: sO constant
strain and constant stress responses are fully related and
represent the common viscoelastic property. Recall Mellor's
analogous conjecture for the constant stress and constant
strain-rate responses of ice, not satisfied by the fluid and
s0lid non-linear differential relations described earlier.
To describe non-linear response it is clear that families of
constant stress tests, or other families of tests, are required
since the superposition property of linear response is lost.
Also the convolution inversion theorem for stress and strain
formulations is lost, so will inversion still exist for particular
types of non-linear integral flow? If it does, then Mellor's
conjecture holds for the model, and in consequence the two types
of response cannot be used as independent data. The immediate
corollary is whether constant stress response can be used to
determine the kernel of a stress formulation, and whether
constant strain-rate response can be used to determine the
kernel of a strain formulation.

These questions in relation to the uni-axial regponse of
ice have been the basis of recent research (Morland and Spring)
which now Qas some results in preparation for publication.

Various approximations of a general non-linear integral law
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describing fading memory have been proposed in the literature.
Truncated expansions in multiple integrals with kernels
depending only on the current strain represent tﬁe response
to strain histories which, in some sense, have départed little
from the current strain, and if the weighting factor decreases
rapidly into the past, then closeness is required only in the
recent past. While such models may apply even for widely
varying strain histories, the motivation is lost. Also, to
determine the multiple kernels, the truncation must be fixed
and an appropriate number of tests performed. If further terms
in the expansion are needed, the correlation procedure must be
repeated for the new truncation, and the previous lower order
kernels are not related to their new counterparts. Alternative
models with strain-history dependent kernels allow higher order
multiple integral corrections to be determined by multiple
strain-step tests, retaining the lower order kernels.

For practical purposes a single integral representation
is desirable, and we have now shown that the first term of the
latter type of expansion is in fact also more tractable than the
apparently simpler finite linear viscoelastic model given by the
first term of the former expansion. That is, the numerical
algorithm to calculate the stress response to constant strain-rate,

’ contras

given the strain formulation, is simple and fast, in
to a lengthy calculation for the corresponding finite linear
viscoelastib model. The kernels for both are determined by a

family of constant stress tests. Mellor's conjecture is
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therefore confirmed for this model. It is also shown that

the constant strain-rate response does not lead to any direct
determination of the kernel in the strain formulation, nor

does the constant stress response yield the kerhél in a

stress formulation. The next important question is how any
difference between observed and predicted constant strain-rate
response could be used to determine a correction multiple
integral to the strain formulation. That is, if Mellor's
conjecture is not satisfied by the single integral defined

by constant stress response, can an extra multiple integral
term which does not change the constant stress response be
determined directly from constant strain-rate response? We
have not, so far, devised a direct scheme, and some optimisation
procedure for approximate correlation may be the most useful
approach. Detailed constant stress and constant strain-rate
data is necessary before single integral models and predictions
can be assessed. Discussion of integral constructions by
correlation with such distinct types of response is completely

absent from the present literature.

11. Concluding remarks

The use of integral relations to describe the non-linear
viscoelastic response of ice is attractive for the simplicity
of structure and for the absence of higher order time

derivatives required in differential relations. As discussed
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in the previous section there is still a need for basic
theoretical research on correlation of integral representations
with typical types of data, and subsequently on ﬁhe formulation
of boundary-value problems as 1ntegro—differenti;1 equations
and the development of the necessary numerical algorithms for
solution construction.

Focussing on low order differential relations which are
known to describe qualitiatively the typical response, there is
now a need for accurate, detailed, test data in uni-axial and
bi-axial stress configurations to determine the actual response
coefficients. Since uni-axial data will appear first, an
accurate uni-axial description should be constructed. The
fluid relation is overdetermined by the anticipated constant
stress and constant strain-rate data, but it has been noted
how the key features can be used to determine a model. Since
the solid model can account for strain-jumps, allows anisotropic
extension, and<is attractive for small strain applications,
correlation with one or more of the'reduced models analysed in
section 5 should have priority. The general solid relation is
underdetermined by uni-axial tests. Given a successful
uni-axial relation, extrapolation to tensor relations to
describe three-dimensional response can be tried in a variety
of ways, to yield tentative models for preliminary solutions
of field applicatibns. Solutions may distinguish the merits of

the different approximations.
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The most simple model would adopt the least number of tensor
terms and minimum dependence on invariants compatible with
uni-axial response. As an example, extrapolating the second
normalised uni-axial relation (5.5) with the simﬁﬁifications
(5.13) and ¢§ = w5 = 0 , by assuming corresponding dependence
on one deviatoric stress invariant J, and one strain-invariant

Kl' yields a tensor relation

(1) _ 2 |
s FET(SDIL + ¥*(J5.Ky) 8

- -1
= ¢$(K;)D + w*(K)[B - 3K;11 , (11.1)

where y*, ¢*, and w* are determined by constant strain-rate
and constant stress responses, including response on unloading,

in uni-axial stress. Only ¢* depends on both stress and strain
invariants. Bi-axial tests, or applications, may éhow that the
directional simplifications leading to (11.1) are not acceptable,
but at least it provides a model with appropriate qgualitiative
response which can be used to develop analytical and numerical
techniques for boundary-value problems. Note that both constant
strain-rate response and constant stress response, and the response
to complete unloading from the range of stress levels considered,

are necessary to construct the simplified model (11.1).



12.
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Terminology

al

CL
CLR
CD
CDR

¢, V,0

T1S
BS

us

engineering strain, decrease in length per unit
initial length “
strain-rate, rate of decrease of lengih per unit
current length

compressive traction per unit current area in
uni-axial stress

compressive traction per unit initial area in
uni-axial stress

constant load in uni-axial stress

constant load-rate in uni-axial stress

constant displacement in uni-axial stress
constant displacement-rate in uni-axial stress
response coefficients in differential relations
generalised Young's modulus

stress jump-strain jump ratio in uni-axial stress
Cauchy stress and deviatoric stress tensors
deformation gradient, Cauchy-Green strain, and
strain-rate tensors

pressure and deviatoric stress invariants
invariants of B

invariants of D

tri-axial stress

transversely isotropic stress

bi-axial stress

uni-axial stress



- 68 -

References

Mellor, M. (1980), Mechanical properties of polycrystalline
ice, in: P.Tryde (Ed), Physics and Mechanics of Ice,
Proc. IUTAM Symp., Copenhagen 1979. épringer-Verlag,
Berlin, pp. 217-245.

Michel, B. (1978), Ice Mechanics. Les presses de L'Université
Laval, Quebec, 499 pp.

Morland, L. W. (1979), Constitutive laws for ice, Cold Regions
Sci. Technol., 1l: 101-108.

Morland, L. W. and Lee (1960), Stess analysis for linear
viscoelastic materials with temperature variation,
Trans. Soc. Rheol., 4: 233-263.

Morland, L. W. and Spring, U. (1981), Viscoelastic fluid relations

| for the deformation of ice, Cold Regions Sci. Technol.,
4: 2