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" Abstract -

A method is proposed for the prediction of
the flow induced vibration response of flexible
cylinders such as cables, pipes, and risers, in a
sheared flow. The significance of material and
hydrodynemic sources of damping is discussed. The
reduced damping or response parameter plays & key
role in response prediction. However, the
dependence of the response parameter and therefore
the response amplitude on the ratio of cylinder
megs per unit length to the displaced fluid mass
per wnit length is shown to be widely
misunderstood. Under lockin conditions, damping is
important in determining response amplitude, but
cylinder mass per unit length is not.

Introduction

Flexible cylinders, such as cables, drill
ripe, and marine risers, often exhibit an harmonic
flow induced vibration response known as lockin.
Under uniform flow conditions, lockin has been
extensively studied and empirical response
prediction techniques are often adequate.

However, real ocean applications often require
response prediction under non-uniform (sheared)
flow conditions. Very long cylinders with closely
spaced natural frequencies rarely exhibit lockin
behavior and frequently behave as infinite strings
(1). For shorter cylinders, with well separated
natural frequencies, lockin with one mode is
possible, even in the presence of shear. However,
in such cases, response amplitude is very
difficult to predict and it is often difficult to
determine which mode, if any, will dominate the
response. In this paper, a method for predicting
lockin in a sheared flow is proposed. The method
makes extensive use of the concept of the response
parameter or reduced damping, as it is sometimes
called.

A very common misconception regarding the
response parameter 1s pointed out. - The response
parameter i1s shown to be primarily a function of
damping and is specifically not a function of the
cylinder mass per unit length.

References and figures at end of paper.

Normel Mode Model of Lockin Vibrations

A pipe or cable under tension has, from an
enalyticel view, an infinity of natural modes.
When the cylinder is deployed with its
longitudinal axis normal to an incident uniform
flow, vibration is caused by the shedding of
vortices in the wake of the cylinder. The vortex
shedding process generates both fluctuating 1ift
and drag forces on the cylinder. Under the
correct circumstances, described extensively in
the literature, (2,3) a phenomens known as lockin
may occur. - Lockin is characterized by the
synchronization of the wake with either the
cross-flow (1ift direction) oscillations or with
the in-line (drag direction) vibrations. This
paper focuses on cross-flow lockin only, in which
one cross flow mode dominates the response. At
lockin in a uniform flow the 1ift forces are
coherent over the entire length of the cylinder.
A normal mode solution to the partial differentisl
equation of motion may be obtained, and is briefly
reviewed below.

Consider a beam or string under temsion with
fixed ends as defined in Figure 1. Let the
vortex-induced cross-flow displacement be given by

y(x,t) = ] q (0)¥, (x) (1)
i

where the ¥, (x) are the mode shapes and the q, (t)
are the modal amplitudes. Using the method o}
normal mode superposition, and assuming
insignificant damping related intermodal coupling,
a set of independent equations of motion are
obtained, one for each mode. These equations are
of the form:

Miqi + Riqi + Kiqi = Ni (t) (2)

This equation is simply that of a linear, single
degree of freedom mass-spring-dashpot systenm

" excited by a force N, (t), known as the modal

exciting force for mode i. There existe one such
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equivalent oscillstor for each mode of interest,
Mi, Ri’ and K, are kmown respectively as the modal
nass, damping“and stiffness. The ratio of K, %o $;, = /2 (11)
M; yields the undamped natural frequency for the
mode, e 1
. - : : ; : | lHi(wi)l = EEZEI : (12)
Couy =k w (3)
oot Therefore, the response magnitude ig
Mi and Ri are given by the following equations: .| INiI 1 (13)
q. =~.———‘——-——
L B AR IR AR T
M, = é mx)¥7(x)ax T T ' ~ ' ‘
L — The term N, /K, 1s the static deflection of the
Ri = J r(x)Wi(dex (5) oscillator”in"response to g constant force N,, ang
0 the term 1/2;i is the dynamic amplification %actor

where m(x) and r(x) are the mass per unit length
and equivalent linear demping coefficient Per unit
length. m(x) includes the added mass of fluid and

r(x) hes units of foree per unit velocity per unit

length,

The damping ratio for mode 1 is given by

(6)

If one specifies an harmonic input aﬁd assumes aﬁh
harmonic output of the following forms

N6 = |n, | elt : o

i(wt-¢)

9 (t) = |q,| e (8)

then a solution for the megnitude of the Tesponse
per unit input force and the phase between the
force and the response may be directly obtained.

lq, | 1/K :
T—iT 5 |H (W] = (9)
Ni . w2 2 sow 2 1/2

i w

[ — (10)

B, (4) 1s known as the frequency function or the
response amplitude operator (RAO).

At resonance, the frequency of the external
excitation is equal to one of the natural
frequencies of the system, indicated here as w, ,
If the corresponding modal damping ratio is small
then the responee of this mode wijl dominate the
response of gll other non-resonant modes. This is
the case under cross-flow lockin conditions in g
uniform flow. Therefore, it ig appropriate to
model the cross-flow, resonant lockin response in

terms of the normal mode equivalent single degree -

of freedom system reviewed above. -

At resonance, the magnitude and phase of the
response reduce to

due to the resonance. Invoking the definition of
the damping ratio, %4» from Equation 6, this
Tesponse expression Gan be rewritten as:

N, |
L B e . ey
la;] = —= e

ivi

This expression will be of considerable uge in the
next section, on the interpretation of the
response parameter. Henceforth, all discussion
will pertain to the Tesponse of a single mode.

Understanding the Response Parsmeter, S, = t /u

"Due to & natural evolution in the
understanding of the factors which determine
lockin response behavior, over the Years this
critical parameter has been expresseq in many
forms, reviewed below. :

. Response berameter:

- _ 2
SG = Cs/u = ZWSt ks (15)

Structural damping retio:

6 R, ’
b5 T3 < 2w, M, : (16)
11
Mass ratio:
P .
po= gD 5 : ' (17)
87 St m -
Reduced dampings
Zm(’Ss 4ﬁmcs
ks =5 = — (18)
' oD pD

Response parameter
8"Zstzm‘r’s
S =

G pD2

T

tg 18 the damping ratio due to structural
dissipation of energy only, and does not ineclude
hydrodynamic sources of damping. ¢ is the
&ssoclated logarithmic decrement. 5 is )
proportional to the ratio of the displaced fluid
mass per unit length 7pD<?/4 to the mase (including
added massg) Per unit length of the cylinder, m.
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For cylinders that do not have a constant mass
per unit length, the m in thege equations is
replaced with an equivalent uniform mess per unit
length By B is the equivalent constant mess per
unit length whBich would yield the eame modal mass
from Equation 4 as the actual variable mess per
unit length m(x). Therefore

L 2
S m(x)¥, “(x)ax
o i

(20)

w2
?i {x)dx

[= I

For the remainder of this paper, a constant mess
per unit length m shall be assumed, to simplify
the analysis.,

D is the cylinder diameter, assumed constant,
and 5, is the Strouhal number given by

=_ (21)

where f 1g the vortex shedding frequency and U ig
the free stream fluid velocity. At lockin the
natural frequency and the vortex shedding
frequency are assumed to be equal. :

21rf8 w w0y 2mS U/D (22)
Over meny yeers the variety of these evolved forms

has led to confusion and misinterpretation of the
significance of the various terms which form the
response paremeter SG'

The most serious misinterpretation is the
implication that lockin Tresponse amplitude depends
on the mass ratio, u. It has been generally
believed that very dense cylinders respond with
lower amplitudes than low density ones. This ig
not true. It 1s in fact dependent on fluid
exciting forces and structural damping (not
damping ratic). The mass per unit length of the
cylinder is only important in determining the
natural frequency. The validity of these
statements can be demonstrated by simply drawing
upon definitions, as shown below.

From Equations 18 and 6

4Tm g 4mm R,
k, = ; S = 29 = (23)
pD pD ZwlMi
Using the definitions of modal mass, and
effective mass per unit length from Equations 4
and 20 yields,
‘ 2mR,
= 24
ko T (24)

2 2
pD wy éWi (x)dx
For the cage of constant damping constant per unit
length, r(x)=r

2rr

2
pD mi

k = (25)

8

If k. 15 not a function of m(x) then from Equation
15 neither is SG'

8g = 275 2ks . (15)

Ri is the equivalent, linear, structursl modal
damping. The mctusl source of damping may not in -
fact be linear. For most interesting vibration
cases the damping 1s low and for any specific
steady state response amplitude an equivalent
linear damping is an acceptable approximation.

specifically on the mass
Ls/Me  As shown, this ig
ratio the dependence on mass per unit length

cancels out. Griffin in reference (7) presents s
plot of response amplitude, 2Y/D, versus reduced
velocity V}=U/an where f 1g the natural ~
frequency.” Thill figure 18 reproduced in figure 4.

because in taking this

one in air and

/v is

However, the damping

mass ratios are different
Bothelo has also

apperent lack of specific dependence

Two different cases are shown,
one in water. For both the ratio ¢
approximately constant.
ratios and therefore the
by an order of magnitude.
observed this
on u (8).

Both Griffin ang Botelho have pointed out
another interesting fact,

much broader bandwidth,
lower damping. The halfpower bandwidth for a
linear oscillator is equal to 2C;w.. Thus one
would expect to see a wider region of large

amplitude response in g figure

higher damping ratio is to make lockin vibration
of the cylinder less sensitive to loeal variations
in flow velocity (hence reduced velocity) and
therefore more tolerant of shear. In other words,
two geometricaelly similar cables with the same
reduced damping but different damping ratios will
respond differently to a shear. The one with the
higher damping ratio will likely experience lockin
OVer a greater portion of itg length.

For most engineers S, has little physical
meaning. In the next secgion, en attempt is made
to clarify it. , - '

An_Interpretation of S., The Response Parameter

No one denies its importance but a common
sense interpretation is needed for S.. To develop
one requires a statement of the equa%ion of motion
for the normal mode excited at resonance during
lockin. At lockin the 1lift force per unit length
in phase with the cross—-flow velocity of the
cylinder cen be expressed ag

£(x,t) = 1/2 pUzDCL(x)eiwit

(27)
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which, when SXpressed ag g double amplitude ip

L
. Ni(t) = f(x,t)Wi(x)dx " (28) dizmeters peak to beak, can pe written ag
o .
> L it 2o | v o
= 1/20U0°ps CL) ¥, (x) axe™®; (29) =) _ —_— i (33)
0 D D R i

Using the expression in Equation 29 for the nodal
exciting force, the nhon-linear feedback mechani gpg
which control response amplitude have been

replaced with ay equivalent lineap exciting force Substitution for ,qil from Equation 31 leads to
r.

. 2N ¥, (x)
assumptions: ’ 2y(x) é” = D; - (34)
1o The 1ift coarripgent ¢ (x) must be chosen 4, e
¥ield the response ampiitude which woulg be pUZW (x)p
observed in &n experiment and can be - i u (35)
estimated from compiled dgtg of SG versug wiRi
Tresponse amplitude, Figure 2,

i1, iﬁﬁ:%ﬂ.GXiBts over the entire cylinder Recalling that

1ii. The moda1 damping on the Jeft hand side N : (23)
arises fron non-hydro ¢ sources only, - s,

and the SXpression for SG in Equation 26, leads
to:

friction drag OPPOsing the crogs-fiey , 2y(x) _ P ¥ (x) (36)
velocity of the Cylinder, 1p an experimentel b L

Sense the net 1ift force is the only sG S Wiz(dex
0

The maximum Tesponse occurs at the Raximum valye
of the mode shape ang therefore

estimate of Ry. Thig will be addresseq in
the section on responge Predicton in sheareg

2y Py,
lx;tax - Lu 1,max (37)

S. /¥ %03 ax
GO i

Therefore, S; 15 & dimensionlegs group which
is an integral Part of the Sxpression one finde
for g Prediction of regponsge amplitude, apg

Tesponse on S should not be surprising,
= X 30
T L 8 o ax <0 STiffin G4) hes compiled apg Published date
relating g to observeq Tésponse, Thege data are
glven in F gure 2 ang Tepresent the results of
bany different types of SXxperiments, including
cantilevers, 8pring mounted cylinders, Plvoted
¢ylinders ang cables., The horizontal axis ig SG

Recaliing Equation 14, an éXpression for the modal
response amplitude gt Tesonant lockin can be foung

1- 2 and the vertical axis ig
n | 3 PDU 1
e 31
Iq:.' W, R, W.R, Pu (31) 2 1.2
i7i ii Ymax i -
=1 (38)
DY,
1l,max

From Equatiop 1 the Tesponse magnitude of the
entire eylinder 4o the one resonant mode jig

y(x) =lqi/“’i(x) (32)
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where ? W? (x) dx o i.  The modal response amplitude for each must be
, o 1 the same and therefore from Equation 14
I, =1 (39)
£ max , N, N, ‘ :
ie _ is a e e .
For example, a string or & beam with pinned ends ] T W.R. (42).
and constant tension have mode shapes which are 1ie s
glven by
. 1ATX it
Wi(X) = sin (577) (40) where the subscripts e and s refer to the
- equivalent and sheared ceses respectively.
and Ii = 3/4 (41)
ii. The exciting force over the reglon x, to x,
Other values for Ii corresponding to different must be the same for both cases. Ou%aide of
mode shapes are given in Reference 4,88 i3 a table this region the forces contributing to lockin
identifying the source of the data used in Figure are assumed to be zero for the gheared case,
2. ‘ and appropriate to that of a fully locked in
1/2 , ‘ cylinder in the equivalent case. The
The factor I 14" was uged in an attempt equivalent cylinder experiences lockin over
to reduce the sca%ter i%mfifotting response data its entire length and therefore additional
for many different types of structures versus SG' power is fed into the resonant mode outside
That this was the appropriate factor to use to of the region X, to x,. In order for the
accomodate various mode shapes was based on the response amplitude to“stay constant the modal
assumption that the wake oscillator model damping in the equivalent cylinder must be
correctly predicts response. Implicit in the wake increased, so as to dissipate the greater
oscillator model are particular assumptions injected power.
regarding the spatial veriation of C (x). This
author ie of the opinion that such mddels are only Solving for the equivalent damping
epproximations and that much of the scatter in the
data is due to the fact that the correction factor Nie
has substantial error for some types of mode Rie = R 5 (43)
shapes. is
It should also be noted that only very little The equivalent response parameter is obtaeined
of the data shown in Figure 2 is derived from directly from Equation 26.
cables and besms under tension suchk as risers and
casing strings, which have essentlally sinusoidal 2 2
mode shapes. In the last few Yeare a large amount 4nm S¢ Rie
of experimental data have been accumulated on such Sep = - T (44)
cylinders, and should be compiled in & separate DDZN Iy Z(x)dx
plot of 2Y nax/D veygus Sg without correction 1,4
factors such as I /Wi .
max
A Proposed Equivalent Response Parameter for anstzmecie
Sheared Flow: Sp =y (45)
a—— oD
Under sheared flow conditions lockin ney -
occur over a limited portion of the cylinder where
defined by the range X, o X,. For sections of Rie
the cylinder outside of this range lockin does not Cie “Tom (46) .
occur and energy is lost due to hydrodynamic ii

damping. In the analysis to follow it is assumed
that only one mode has significant response, and
even though exciting forces do exist outside of
the lockin region they are not at the natural
frequency and cause insignificent response. The
method proposed is intended to be used to evaluate
several possible vibration modes, one at a time,
to determine which if any is likely to dominate
the response.

A substential database exists, which
tabulates observed response versus the response
parameter, SG’ but for wmiform flows only. The
approach proposed here takes advantage of this
existing database by prroviding an estimate of the
response parameter of an equivalent cylinder in a
uniform flow, which would behave the same as the
cylinder in the sheared flow. In order to be
equivalent, both the cylinder in the sheared flow
end the equivalent cylinder in the wniform flow
must have the following charscteristics.

and B, is defined in Equation 20. It remsins to
obtain a detailed expression of Rés in terms ?f )
R and N, /N, . From Equation and item (ii
a%gée,- e’ 18

L
g Cp (x) ¥, (x)ax 2
= —— e 2 B 47
Nie/Nis X2 Ps (47)
S CL(x)Wi(X)dx
Xy

and from Equation 5

L

R = é (x (x) + rh(x))‘{’iz(x)dx (48)

is ~

D
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where r_(x) ang r (x) are the structursl and
hydrodygamic damp?ng constants per unit length,
respectively. For the sake of example, let rs(x)
and rh(x) be constant everywhere except in th8

region x, to X, where r, (x) the hydrodynamic
damping.;siroquired tov zero. This leads to
Lo 2
Ris = (rs+rh)g Wi (x)dx

X, v
Tl f_zf'w.z(x)dx' " (49)
h'i :
Perhaps the most convenient form in which to
express S g 18 in teérms of the/SG for the actusl
cylinder gn a8 uniforn flow. oo

Therefore frop Equations'26, 43, and m

R, ..
ie

R_ =5

SGE = 'SGU (50)
O is ,

vhere the sﬁbacfipt u has been added to clarify

which quantitieg come from & uniforp flow case and

cases; iii.
;’gﬁga:ijnd::dzge:hzo"heu °d conditions. Tais estimating the extent of locked~ir regions 1,
%2 sheared flows; iv, +the dependence of the locked-
P r r. 4 ¥ oax in region on damping ratio ang bendwidth, .
Sep=p+ BB 1 (51) v : .
GE Ps fs Tg L 2 U One model for predicting the Jocked~in region
é ¥ oax has been offered in the lterature (5,6), »
Experimental observation is needed.
Both the quantity in brackets ang the ratio Pu/Pg
must always be greater than or equal to one. §2!ggg;§§g£2 -
Therefore S, 4g always greater than op equal to Cp(x) 1ift coefficient .
Scy- Note that in the linit as the sheared £loy D ¢ylinder diameter
bécomes uniforn, SGE equals Sgy» &8 expected. £ vortex shedding frequency (Hz)
Hy (w) frequency response function or RAQ
To proceed farther requires knowledge of Ii . mode shape correction factor
C.{x), the 1ift coefficient. 4g an instructive Ki modal stiffness ‘
example, but adnittedly without experimental ks reduced damping :
justifications, let CL(x) be proportionsl to the L length of flexible cylinder
mode shape Wi(x). Mi modal masg
mym(x) constant and varisble mass per unit
CL(x) = cL Wi(x) (52) length i
m constant m equivalent to a variable
Then the expression for Pu/Ps in Equation 47 m(x) )
simplifies greatly and N1 modal force ~
L 2 Nie . equivalent system modsl force
r 4 ¥ (0 ax Nis nmodal force fop sheared cage
S = [(1+ B O -y s (53) L Py integrals in uniforg flow and sheared
GE s %2 5 Iy GU cases
£ Y. “(x)ax g, (t) modal amplitude
: 1 - Ri modal damping constant .
Ry R Ri in equivalent ang sheared casg
Continuing the example, assume that the second ie'is i d an are es
mode of a cable with the mode shape S refponse parameter
Gu,SGE SG_for unl?orm flow and sheared
Y (x) = sin 2mx (54) flow equivalent
2 L St Strouhal number
1s excited over one fourth of 1t length; x,=0 to g gggc:;rj:’l"o:ﬁ;“ty
X5=L/4, as shown in Figure 3. In that case, & longitudina] coordinate
3rh : X, X range of lockin
Sep = (4 + T Sg (55) ¥ x,%),y(x) cross flow response amplitude
s Ynax Baxioum value of y(x)
If the distributed damping per unit length has Sg 1°§:;;;ﬁ’g“i° decrement for structural
equal hydrodynamic ang material components, then 5 model damping ratio '
- z structural modal damp: ratio
%k = 7Sg, (56) o5 squivalent, ing :
In this particuler example, the cylinder in g w frequency (radians/sec)
sheared flow, with the top quarter of itg length Wy natural frequency .

experiencing lockin in
respond at

Conclusions and Recommendations
=== 8¢ JSecommendationg

If only one mode has & natural frequency
excitable by a sheared flow, then & woret cagse -
prediction is given by the method deseribed above,
However, if two Oor more modes are potential

computed,
most likely lockin candidate,  If two or more
modes heve low § r Values, pultimodal non-lockin
response or beatgng between modes may be observed,

The accurate Tesponse prediction of flexible
cylinders in sheared flows requires much more
experimental data. Areas of Particular weakness
are: i, the current state of knowledge of the

. hydrodynanic damping on the non~-locked in regions

of a eylinder; 1i.

the form of ¢ (x) for both
uniform and shesred %

he means of

410
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