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SUMMARY

Structures with natural periods in the range of four to ten seconds will be susceptible to
hi cycle-low stress fatigue damage due to resonant structural response in commonly occurring sea
conditions. It is shown that the computed fatigue life of a structure is extremely sensitive to
the designer's estimate of the natural period - varying by as much as the natural period raised to
the minus eighteenth power. A 10% error in the estimated natural period may result in a factor of
six error in computed fatigue life. Dbamping ratio estimates are very prone to error. Fatigue
life is shown to vary as approximately the square of the estimated damping ratio.

It is known that directional spreading of wave energy has a mitigating effect on fatique

=~ damage. This is guantified in a parameter variation study. A new wave spreading model is pro-

posed that as a result of informal communication is already being adopted by oceanographers for
the description of observed sea states.
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NOMENCLATURE

constant of proporticnality
constants of the SN fatigue life curve
factor which accounts for spreading of waves

spreading function

Young's modulus

eccentricity

rate of fatigue damage accumulation
acceleration of gravity

stress transfer function

medal stiffness

modal mass

number of cycles
radiation damping

total damping

Krogstad upper bound wave spectrum
point wave amplitude spectrum
directional wave amplitude spectrum
stress spectrum

Wirsching correction factor
Gamma function
bPelta function

average zero upcrossing frequency in Hz

frequency in radians per second

frequency of the peak of the wave spectrum
natural frequency of mode x

modal damping ratio

density of water

mean square dynamic response

mean square static responset

mean square stress

mean square deflection for mode x

angle of wave incidence
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INTRODUCTION

The purpose of this analysis is to investigate the sensitivity of fatigue life calculations
to variations in natural frequencies, modal damping ratios, and directional spreading of the wave
spectrum. The results of such an analysis may be used to reveal the extent to which uncertainties
in the estimates of such parameters will affect the estimated fatigue life of offshore structures
excited by waves.

This analysis does not consider the uncertainties in material properties or the fatigue dam-
age accumulation models themselves. This area is left to the materials specialists. This study
also leaves to others the analysis of the uncertainties associated with the description of the sea
states to be encountered by the structure.

The influence of wave spreading is considered for a given wave spectrum, and a new single
parameter spreading function is introduced. A structural model and its idealization are selected
and one method of wave force estimation is used. The wave force model assumes that drag exciting
forces are negligible and that finite wave amplitude effects are not significant. 1In any specific
application these two assumptions can and should be checked. However, for the computation of high
cycle-low stress fatigue damage on large deepwater structures these assumptions are usually wvalid.

For the case that drag excitation cannot be neglected, the results of some recent research
at MIT are mentioned. With these results the second order statistics of response may be estimated
including non-linear drag exciting forces.

The exclusion of finite wave amplitude effects is probably valid for large deepwater struc-
tures in low to moderate seas, which contribute the most to high cycle-low stress fatigue damage.
The governing non-dimensional parameter is likely the ratio of wave amplitude to water depth for
slender bottom mounted structures. However, this is an area in which some additional research is
justified.

THE FATIGUE ACCUMULATION MODEL

For the purpose of this study the assumed form of the fatigue damage accumulation model is
that used by Crandall and Mark, 1973, when the stress history is assumed to be described by a
narrow band random process. This formulation implicitly assumes a Palgren-Miner rule for damage
accumulation. Equation (1) describes the mean rate of accumulation of the fatigue damage index
for a location 8 in the structure due to a directionally spread random sea with mean direction 0,

+
v
= s 3. 2,b/2
F(B'GO) = e (2 GS ) F(l+b/2) (1)
F(B.eo) = the mean rate of accumulation of the fatigue damage index at position B, due to
a wave field with nominal direction of propagation BO.
oi = the mean square stress at position B,
v; = the average zero upcrossing rate of the stress process in Hz.
() = the Gamma function
b, c = constants of the 3-N fatigue curve of the material as defined by Equation (2},
where N is the number of cycles to failure with a stress range S.
ns? = ¢ (2)

. . . + .
This model, and the material constants b and ¢ are assumed fixed. This leaves vo and 02 as vari-
ables to be considered.

v ¥ depends on the frequency content of the wave spectrum as well as the wave amplitude to
stress “transfer function for the structure. If the structure has no natural frequencies in the
region of significant wave force, then the response is generally quasi~static in nature and v is
governed primarily by the frequency content of the wave spectrum. When the stress is primarily
due to the response at a natural frequency, then vg is strongly dependent on the natural frequency.

In both of the cases the response is approximately narrow band and the use of Equation {1)
is appropriate. In the case that the response spectrum is composed of significant quasi-static
and dynamic response peaks then it may be necessary to modify the above equation. One such
modification is the use of a final correction factor, such as proposed by Wirsching, 1979, in
which rain flow cycle counting procedures are used to obtain a correction factor to account for
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broad band stress spectra. The use of such a correction factor is assumed to be valid here.

The task is then to investigate the sensitivity of the mean square stress o§ and the average
zerc upcrossing fregquency, v} , to variations in structural natural frequency and modal damping.

QUASI-STATIC AND DYNAMIC CONTRIBUTIONS TO MEAN SQUARE STRESS

In this study, it is assumed that mean Square stress at a point in a structure may be
approximated by the sum of a gquasi-static component due to low frequency waves and a dynamic com-
ponent due to the damping controlled response of natural modes of the structure excited by the
higher frequency components of the wave spectrum. This is comparable to the procedure of supple-
menting a full static finite element solution with the dynamic contributions of the significantly
responding natural modes.

In this analysis the response is assumed to be guasi-static up to within one half power
bandwidth of the lowest natural frequency of the structure. Furthermore, the lowest natural fre-
quency is not allowed to be less than the peak frequency of the wave spectrum. The computation of
the mean square stress is then accomplished by summing the mean square static component with the
dynamic contributions.

The guasi-static component of stress at a specific location is assumed uncorrelated with the
dynamic components., However, for closely spaced natural frequencies, correlation between the
stress compeonents of two or more natural modes may have to be considered. The partitioning of
static and dynamic contributions to the total stress is illustrated in Figure 1, a stress spectrun
with a quasi-static stiffness controlled peak and one damping controlled resonant peak.

The guasi-static mean square stress oy“, is obtained by integrating the stress spectrum up

to w, = ml(l-2£J where w] is the lowest natural frequency and £ is the modal damping ratio of that
mode.
w
2 c
a. = [ s_{w)dw . (3)
d o S

where Ss(w) is the stress spectrum. I

For a complex structure 02 could be computed from a static finite element model. The cal-
culation of the static mean squdre stress may include the influence of drag forces, in which an '
equivalent linearization procedure has been used or a more accurate non-linear wave force spectrum
has been computed using the results of Dunwoody, 1981. Drag forces are neglected in the examples ,
of this report.

|

This static approximation does neglect any dynamic amplification at frequencies below the
cut off.

The average zero upcrossing frequency of the static component of stress is computed from the
zero and second order moments of the truncated spectrum.

wcz

S w'S8_(w) dw

G S 1
Yq = = =3
w g

[o]
7 S (0) dw 4
o s

€ 2
w Ss(m) dw (4)

O~ E

02 and mz for the example calculations are assumed to be provided for the purposes of the
remainigg discissions.

The dynamic or damping controlled contributions to the mean square stress are computed sep-
arately. The area under the stress spectrum as shown ir Figure 1 for w1(1—2£)<m<wl(1+2g) is de-
fined as the mean square dynamic response for mode 1. n

There may be more than one mode which has significant dynamic response. The dynamic con-
tribution of each must be separately evaluated. 1In this report the mean square dynamic response
of all significant modes will be computed using techniques described by Vandiver, 1980. In this
reference it is shown that the mean square dynamic response of an individual mode x is given by:
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Figure 1. The partitioning of stress into static and dynamic components.
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X X
: where:
ci: mean square dynamic deflection of the xth normal mode
m: modal mass
w, natural frequency
Sn(mx): wave amplitude spectrum evaluated at W
, w' density of water
g: acceleration of gravity
\
R (w )
I TR T ratio of the radiation (wave making) to total modal damping evaluated at W,
T

This result is valid for lightly damped modes excited by linear wave forces. The constant
C, depends on structural geometry and wave spreading and is assumed to have been evaluated as
as described in Vandiver, 1980. Through knowledge of the mode_shape and structural details, the
mean square stress at a specific location can be related to o,.°-

If there is more than one mode contributing in a significant way to the dynamic response

. then the stress at any specific location in the structure will depend upon the superposition of
b Stresses from each mode. If the natural frequencies of each responding mode are different, (at

; least so that their damping controlled peaks as defined in Figure 1 do not overlap), then the
stresses contributed by each may be assumed to be uncorrelated and the total mean square stress
will be the sum of the mean sguare stresses due to each individual mode. This is a conseguence of
| the fact that waves and hence wave forces of different frequencies are uncorrelated. If two peaks
' overlap then the correlation between stress components must be included.

B LR

The mean zero upcrossing frequency for mede x is simply w /2n The mean upcrossing fre-
quency for the combined static and dynamic stress history may b computed as a weighted sum of the
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individual contributions as shown below for a system with a single dynamic component.

1/2

2
T R y (6)

9 * a1

where m2 and 02 reflect the static response and m% and odlz are the natural frequency and mean
sguare dynamic ‘stress contributed by mode 1.

THE EFFECT OF NATURAL FREQUENCY ON FATIGUE

If the fundamental flexural natural period of a steel jacket structure was taken to be 3.5
seconds for the purpose of fatigue life computation, and the as-installed natural period turned
out to be 4.0 seconds, how much would the estimated fatigue life be reduced? Recalling equation
(1) and adding y, a Wirsching type correction factor to account for broadbanded spectral effects,
yields

+
v

F o= oy (23052)b/:2

r{l1 + b/2) (7

Assuming that wave spreading effects have been taken into consideration, then a variation in the
estimated natural period of a mode will influence three parameters in the above egquation: vy, v_ .
and og2. 052 will change because its dynamic¢c component will change. This is because the wave
spectrum is a rapidly changing function of fregquency, and as can be seen in Equation 4, the mean
square dynamic response is proportional to the wave spectrum divided by the natural frequency
raised to the fifth power. vg,* will change as can be seen in Equation 6 because it depends on the
natural frequency as well as on the mean square dynamic stress; y may change because the broad-
bandedness of the stress spectrum may change. If an asterisk is used to denote the result with a
shifted natural frequency, then the ratio of fatigue damage between two cases may be expressed as:

b/2
Fxo_ 0 xx (V0+*)(:§Ei) (8)
F Y uo+ OS2

The two extreme cases are simple to evaluate. The first is when the estimated and actual natural
periods are so short that the dynamic component of 032 is negligible. This is true for most
structures when the lowest natural frequency corresponds to a pericd of 2.4 seconds or less. 1In
this case F*/F = 1.0.

The more interesting extreme is when odlz, the dynamic component of stress of a single
natural mode is assumed to be much larger than the static component. This may not always be the
case, but provides a useful upper bound on the variation of fatigue with natural frequency. One
way to estimate this case is through the ratio of fatigue damage at two different natural fre-
quencies.

b

+» * * b
ro_ Y (" dl) _ Y (Gdl) 9)
F v,t Va Y1 \%a1

Because the process is narrow banded, the Wirsching correction factor reduces to 1.0 for
both cases, and the upcrossing frequency reduces to the natural frequency divided by 2w.

w
1
Vg = T4 {10)

The only remaining step is to evaluate the frequency dependence of oy 2, the mean square stress
from dynamic response of the mode. This is quite easy and may be estimated directly from Equation

{5), with one minor modification. 1In normal mode formulations, the product of the modal mass and
the natural frequency squared is simply the modal stiffness.

=K (11)
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If the natural frequency varies because the modal stiffness is different than expected then
the effect on mean sgquare stress should be evaluated using equation (5). However, if the modal
mass varies, then the effect on mean sgquare stress should be evaluated after substituting Eguation
{11) into Equation (5), as follows.

4
¥
£

3

2.5C.p g R (w,)
0,2 = — M s ) s (12)
K.,w T 1

. 171

s If it is assumed for small variations in natural frequency that the ratic between mean
square modal deflection and mean square stress at a location of concern remains constant, then the
frequency dependence of the mean square stress is the same as that for mean square deflection as
given in Equations (5} or (12). This is essentially an assumption that the mode shape does not
change, which is not true, but is adequate here for the purpose of a simple check on sensitivity
to changes in natural frequency. Therefore stress and deflection may be related as shown.

°d12 - ay? (13)

If there is any substantial wave spreading, such as cosine squared, then C; is only weakly depen-
dent on frequency and is assumed not to vary. Similarly the ratio of radiation to total damping
is assumed constant in comparison to other sources of variation. Lumping all constant quantities
into A2 in Equation (13), two expressions for 0312 result, depending on whether the source of
change was mass or stiffness.

o 2 A2 Sn(ml) (stiffness (14)
di B ﬁ; 5 changes
“1
o 2 - 22 Snty) (mass ) (15)
dl Kl 3 changes
“1

It remains only to evaluate the fregquency dependence of the wave spectrum.

Krogstad, 1979, has presented evidence that wind driven wave spectra may be modeled at fre-
gquencies higher than the frequency of the peak in the wave spectrum as given below:

s __({f) = 1.62 x 1073 745 12 - sec {16)
max

This is the upper bound curve for spectral values, but possesses the frequency dependence char-
acteristic of the high frequency side of wind driven wave spectra.

Expressed as a function of w, Equation (16} takes the form

-4.6

-3 w
x 1.62 % 10 (5?) {17}

w

g

L
s

Assuming all of the constants in this spectrum are absorbed into the constant AZ in Eguations (14)
or (15) yields

2
2 A 1 .
G = 2 —3 % stiffness
al Ml wy -6 { changes ) (18)
°d12 = ?(2‘ 76 (M2ss ) (19)
1 wy ) changes

Substituting each of these expressions into Equation (9) and setting the slope, b, of the 5-N
curve equal to 4.1 for welded tubular joints yields

-14.6

FH wy*
— = _—_ mass
F (ml ) - (changes) (20)
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-18.7
*

Ll (wl ) Liff
= stiffness
F w1 ( changes ) (21)

Therefore, if the natural freguency is 10% greater than predicted, then the fatigue life
will be increased by a factor of 4.02 or 5.94 depending on the source of the error.

These examples were upper bound situations in which the guasi-static contributions to mean
square stress were assumed small. In most cases of practical interest both contributions will be
of importance and the sensitivity to natural frequency variation will not be so extreme.

THE EFFECT OF DAMPING ON FATIGUE

A variation in the estimated damping of a normal mode influences the mean square dynamic
contribution to the total stress directly, and the average upcrossing frequency indirectly, be-
cause of its dependence on the mean square dynamic stress.

To place an upper bound on the significance of an error in the prediction of modal damping
an analysis similar to the previcus section may be performed. If only the dynamic component of a
single mode is presumed to contribute to the total mean square stress, then proceeding as before
leads immediately to the following conclusion:

. R (g N\ R_tw, NP2
F - r' 1 r' 1l (22)
F RT(mlj R, ml)

All terms involving frequency directly cancel out because the natural frequency does not change in
the example.

The method of computing mean sguare dynamic stress used in this analysis is somewhat uncon-
ventional and not widely used in the industry. Therefore, to reflect conventicnal practice the
same upper bound on the sensitivity of fatigue damage calculations to variations in estimated
total damping may be expressed as follows:

| £ b/2
L (ET_*) (23)
] T

*
when &p and Ep are the estimated and actual total modal damping ratios, which are commonly estim-
ated in the range from 1% to 5%.

It is the position of the author that the uncertainty in estimating the ratio of the radia-
tion to total damping is much less than the uncertainty in estimating the total modal damping it-
self. Furthermore, the use of Equation (12) leads to estimates of mean square dynamic stress
which are bounded because the ratic of radiation to total damping is at most 1.0. No such upper
bound exists when conventional methods of computing dynamic response are used.

Furthermore, conventional methods of estimating response require independent estimates of
the modal wave force spectrum and the total modal damping. This ignores the fact that the medal
radiation damping and the linear modal wave force spectrum are proportional to one ancther .
Thus two sources of uncertainty enter the calculations where only one exists.

For the sake of example, suppose in either formulation the damping is underestimated by a
factor of 2.0. This will lead to an overestimate of the fatigue life by a factor of

(Z)b/2 = 4.14 for b = 4.1 (24}

for the extreme case of no static contribution to the stress.

THE EFFECT OF WAVE SPREADING ON FATIGUE

For a given sea state the stress time history at any particular point on the structure will
depend on the directional distribution of wave energy. When the stress is linearly dependent on
the wave amplitudes, the stress spectrum at a point designated by the character § may be expressed
in terms of a transfer function.

_ 2
S (Brw,0) = Innstﬁ.m.e}l 5, (w,6) (25)
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where
HnS(B,m,B) - wave amplitude to stress transfer function
Sns(w,e) - directional wave amplitude spectrum
9 - angle of incidence of various wave components

Spreading Functions

The directional wave amplitude spectrum has the property that integration over all possible
angles of incidence must yield the point wave amplitude spectrum.

2m

Splwd o r s (w6140 (26)
0 n

In general, the amount of spreading for a given sea state will depend on wave freguency.
However, most commonly used models assume, for mathematical conveniences, that the wave spreading
for each sea state is independent of frequency. The use of such simplified models is acceptable
because at this time the ability to predict more complex descriptions of the sea is not available.
In this paper spreading models will be of the frequency independent form as shown in the following
eguation.

Sn(w,ﬁ) = Sn(w)D(B) (27

There are two simple limiting forms of the spreading function, D(8). The first is the uni-
directional spectrum in which waves come from a single direction 6_,, and the second is the totally
diffuse or omni-directional spectrum in which waves come from all girections with equal pro-
bability. These cases are given below.

Uni~directional

Sn(m.e) = Sn(w)é(e—eo) (28)
Omni-directional
Sn(m,e) = Sn(u)/Zﬂ (29)

The most common non-trivial spreading function is known as the ‘cosine squared'. It is
given below.

2

]

2 _
Sn(m,O) Sn(m); cos” (0 80) (30)
for n/2 < 6—90 < m/2

= 0 otherwise
The cosine squared model is awkward to use in a sensitivity analysis because the extent of
the spreading cannot be continuously varied from uni-directional to omni-directional by simple

variations of a single parameter. An equally valid and much more flexible spreading model is
introduced in the next section.

The Elliptical Spreading Model

The elliptical spreading function was initially suggested by Dunwoody and is described here
for the first time. The function is given below {(Dunwoody, 1979}.
l—e2
2w (l-e cos (6-9 1)

D(B-BO) (31)

In polar coordinates, D(8-8_ ) describes a family of ellipses based on the eccentricity para-
meter e. One of the focii of the ellipse lies on the origin of the coordinate system and the

other focus lies along the direction 8,. The eccentricity parameter can take on any value between
zero and one. Zero corresponds to a completely diffuse sea with equal amplitudes of waves propa-
gating in all Jlirections. The spreading function, D(6-8_), is suitably normalized so that the

287



——————

point wave amplitude spectrum, computed by integrating the directional spectrum over all angles,
equals the original point spectrum. This angular spreading function has been chosen over other
possibilities because the amount of spreading is a smooth function of a single parameter. The
parameter, e, can be used as the measure of spreading in the computation of fatigue resistance.
The parameter e may also be easily fitted to experimental wave spreading data.

Relative Rates of Fatigue Damage

variation in the extent of wave spreading may change the rate of fatigue damage, F, as ex-
pressed in Equation 7, because of resulting changes in the mean square stress, the zero upcros-
sing frequency or the Wirsching correction factor. Two different spreading models may be compared
by taking the ratic of the appropriate expressions for the rates of fatigque damage. The result
will in general have the form of Equation 8. No simple generalizations can be made as to the
effect of spreading on fatigue, with the exception that fatigue damage rates based on a worst case
direction in a uni-directional sea will be reduced by spreading. Not much more can be concluded
without evaluating a particular structure. To add some insight to this discussion, the particular
example of a single vertical cylinder is presented in detail.

A simple caisson structure is shown in Figure 2. The structural properties are agsumed to

E IR A = 3 e = Y 1
— T e
St . WAVES
—— ~— /
. A
> -
‘s o)
e
P> .
= ’ \
\l
\ 8 xc
CYLINDER
Figure 2 Caisson Producticn Platform Figure 3 Coordinate System pefinition
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be symmetric with respect to the longitudinal axis. At any particular level on the structure,

such as the mud line, the stress transfer function at a point on the perimeter defined by the
angle B as defined in Figure 3, is given by the following eguation.

e

Hns(B.w.e) = Hns(w) cos (6-8) (32)

where 8 is the incidence angle of a regular wave component at the frequency w.

To demonstrate the influence of spreading in this example the rate of fatique damage F, cor-
responding to a spreading function D{8) will be compared to the fatigue damage rate F,, corres-
ponding to a uni-directional spectrum incident on the structure from the angle 6,. DI(8) is
assumed to be a frequency independent spreading function which is symmetric about the mean incid-
ence angle, 08,

For these conditions, each peint on the caisson will have stress spectra whose frequency de-
pendence will be independent of the amount of spreading. Put another way, if only the spreading
function is varied, all the resulting stress spectra at a point will be proportional to one an-
other. As a conseguence the mean Zzero upcrossing frequency and the Wirsching correction factor
will not change with spreading. The ratio of the fatigue damage rate, F, with spreading to the
uni-directional case, Fg, will simplify to

2 b/2
- S (33)

The two relevant expressions for mean square stress are given below. Due to the axial symmetry
of the caisson the mean incidence angle, 8,, can be set to zero with no loss of generality. This
has been done in all subseguent calculations.

2 ® 2 L
= { -
o, g |Hns(m) Sn(m)dmécos {e-B)yD(B)de (34)
' 2 ° 2 2r 5
Ueo = é'HnS {w)t Sn(m)dwgcos {e-R)46 (n)ds (35)

Substitution into Equation 33 leads to

27 2
J cos®(68-B) D{B)dE
== - , (36)
o cos” (B)
The above ratio can be evaluated for various spreading functions D(8}. This is shown below

for the cosine squared and elliptical spreading functions.

Cosine sguared:

b/2

F_ 3 1,2
7 [T + 3 tan“gl (37)

Hence, for the worst case direction B = 685 = 0, the fatigue damage rate is reduced to

b/2
F _ 3
= = [3} {37a)
o
For b/2 = 2.05 (37b)
F - .s554 (37c)
F
O
and the fatigue life
1 . 1
7 = 1.8 x Fo {(374)
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The fatigue life is increased by a factor of 1.8.

Elliptical spreading:

F 5 b/2
7 = [G+ tan®g(1-G)) {38)
e}
2n 2, +f 2
where G = s S98 8 Yl-e® 44 (39)
¢ 2n{ l-e cosd)
Again for the case B = 0, = 0 a simplified expression is obtained.
£ = g b/ (40}
o
The ratio of the corresponding fatique lives is simply
L -b/2
T G (41)
o

These results are shown in the following table for varicus values of the spreading parameter e,
and b/2 = 2.05.

TABLE 1

Spreading parameter e versus G, F/FO and L/LO for b/2 = 2.05

e G gﬁ %— Description of Wave Spreading
o o
0 0.5 .24 4.2 omni-directional
.5 0.53 .27 3.
.7 0.58 .33
.8 0.62 .38
-85 0.65 .41
.9 0.69 .47 2.1
.95 d.76 .57 1.8 approximate cosine squared
.99 0.87 .75
1.0 1.0 1.0 1.0 uni-directional

These results show that cosine squared spreading extends the fatigque life by a factor of 1.8
while omni-directional spreading would increase the life to 4.2 times the uni-directional result.
The possibility that omni-directional spreading might happen in nature may seem remote. However
for any linear stress transfer function for a structure of arbitrary shape

lHnS(B.w.e)l = IHns(B,w,9+ﬂ)i (42)

It is therefore only necessary that the waves be uniformly distributed over 7w radians to achieve
the maximum extension of fatigue life over the uni-directional spectrum coming from the worst case
direction. Structural symmetry may also reduce the total angle over which the waves must be
evenly spread to achieve the maximum benefits. In some cases, a realistic amount of spreading,
such as cosine squared is sufficient to derive the maximum benefit. an example is the fatigue
caused by the heave response of a square planform tension leg platform as discussed in Vandiver,
1980.
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CONCLUSIONS

By means of general formulations and a specific example, the dependence of fatigue on the
uncertainties related to natural frequencies and damping ratios have been demonstrated.

Uncertainties related to the prediction of structural natural frequencies are primarily re-
lated to the structural idealizations or models used in the design process. The greatest weakness
is probably in the area of foundation modelling. The behavior of soil under cyclic loading condi-
tions remains a rather uncertain field. Assumptions regarding soils stiffness have dramatic im-
pact on the estimation of structural natural frequencies.

The uncertainties related to damping estimates have several sources. One of the greatest is
a general lack of accurate estimates of damping on existing structures. This issue and a method
for obtaining improved measurements of damping on existing sturctures are addressed by Campbell,
1980, The second reason for uncertainty is that direct estimation of individual components of
damping are rarely made, and the knowledge required for making such estimates is not widely avail-
able in the industry. To understand the complete damping problem one must understand the fluid
mechanics, the soil mechanics, the structural mechanics, and their interaction. A final source of
misuse of damping is that the relationships between exciting forces and damping mechanisms are too
frequently ignored. A versatile single parameter wave spreading function has been introduced and
used to demonstrate for a particular example, the importance of wave spreading in fatigue calcul-
ations.

The purpose in this study was to highlight the significance that estimation of natural fre-
quencies, damping ratios, and wave spreading has in the calculation of the fatigue life of a
structure. The results are in a subjective sense guite general, even though a specific fatigue
damage accumulation rule was assumed. Of the various high cycle damage accumulation rules pro-
posed to date, none are so different that the qualitative insights contained in this paper woculd
be invalidated. These insights should be of help to the designer in judging the relative im-
portance of the various factors which must be considered in the performance of a fatigue life cal-
culation.

These results might be extended by means of a sensitivity analysis on an actual numerical
model of an offshore platform intended for use in, for example, the North Sea or the Gulf of
Mexico. 1In a very recent paper (Vugts, 198l), the sensitivity of fatigue damage rate to vari-
ations in water depth, damping ratios and several other structural parameters has been investi-
gated and is recommended to the reader.
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