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ABSTRACT

The fatigue life of offshore structures is investigated
under the conditions that dynamic response to waves is assumed
to play a significant role.

The study emphasizes the variation of fatigue life as a
function of the structural natural frequencies, the amount of
modal damping and the extent of directional wave spreading.

The results may be used to assess the confidence kounds
on fatigue life estimates that result from uncertainties in
design stage estimates of structural natural frequencies,
damping and wave spreading. The example of a single wvertical
cylindrical caisson is completed in detail. This example
includes the explicit computation of wave radiation damping and
nydrodynamic viscous damping.

A versatile single parameter wave spreading function is
introduced and used to show the influence of wave spreading
on fatigue for conditions varying from unidirectional to

totally spread random seas.

This report was submitted to the Norges Tekniske Hggskole
at Trondheim, follewing the completion of a visiting professor-
ship during the summer of 1980.






THE SIGNIFICANCE OF DYNAMIC RESPONSE

IN THE ESTIMATION OF FATIGUE LIFE

J. Kim Vandiver

INTRODUCTION

The purpose of this analysis is to investigate the sensi-
tivity of fatigue life calculations to various parameters which
govern the response of an offshore structure to wave forces.

Such an analysis may be used to reveal the extent to which
uncertainties in the estimates of such parameters will affect
the estimated fatigque life.

This analysis does not consider the uncertainties in material
properties or the fatigue damage accumulation models themselves.
This area is left to the materials specialists. This study also
leaves to others the analysis of the uncertainties associated
with the description of the sea states to be encountered by the
structure. Therefore, within a fixed, assumed framework of
commonly accepted models of material behavior, damage accumula-
tion fecrmulas, and sea state description, the effect on fatigue
resulting from the variation of three dynamic response parameters
will be investigated. The three parameters are structural
natural frequency, modal damping, and the directional spreading
of the incident wave spectra.

Several example calculations are performed for the case of
a simple vertical cantilever excited by waves. It is felt that
the insight gained by these simple examples will be wvaluable in

understanding the significance of these parameters when more



complex structures are considered. The vertical cylinder was
chosen because quantative results may be obtained without re-

sorting to complicated numerical modeling.

VARIABLES WHICH INFLUENCE THE ESTIMATION QF STRUCTURAL RESPONSE

There are many variables which may introduce uncertainty
into the response estimation procedure. Some of the more im-
portant ones are:

1. The model of the wave spectrum including directional
spreading.

2. The estimation of structural natural frequencies.

3. The estimation and subsequent use of modal damping
ratios.

4. The configuration of the real structure.

The structural model or idealization of the real
structure.

The wave excitation model.

7. The computational methods used to estimate the
response and eventually the member end forces and
stresses,

In this analysis items four through seven will be fixed.

In the example computations, a structural model and its
idealization are selected and one method of wave force estima-
tion will be used. The wave force model will assume that drag
exciting forces are negligible and that finite wave amplitude
effects are not significant. In any specific application the
last two assumptions can and should be checked. However, for
the computation of high cycle-low stress fatigue damage on large
deepwater structures these assumptions are usually wvalid.

In the case of drag excitation the results of some recent
research at MIT are mentioned. With these results the second
order statistics of response may be estimated including non-
linear drag exciting forces.

The exclusion of finite wave amplitude effects is probably



valid for large deepwater structures in low to moderate seas,
which contribute the most to high cycle-low stress fatigue
damage. The governing non-dimensional parameter is likely the
ratio of wave amplitude to water depth for slender bottom
mounted structures. However, this is an area in which some
additional research is justified.

Item seven reflects the current discussion in the offshore
industry regarding the best way to estimate the stress at a point
in a structure with finite element methods, when dynamic response
is significant. The most thorough investigation of the problem
is that reported by Vugts and Hines [1].

They compared results obtained from finite element struc-
tural models, implemented in three different ways, as follows:

1. Direct solution of the complete dynamic eqguations
of motion.

2. Normal mode superposition.

Full static, plus the dynamic contribution of a few
modes considered to be important in the dynamic
response.,

Vugts and Hines concluded that direct solution was best and that
pure normal mode superposition was unreliable by comparison.
They also concluded that supplementing the dynamic contributions
of the most significant normal modes with a full static solu-
tion was considerably better than pure normal mode superpo-
sition. They were not able to fully explain the discrepancies
between the methods. It is for this reason that this issue is
mentioned in this report. There exist some unresolved questions
in the area of finite element dynamic modeling methods.

During the literature search conducted as part of this
investigation an attempt was made to evaluate the likely sources
of the discrepancies. Insufficient detail was available in the
published literature to draw any precise conclusions. However,
one common feature was evident. Farigue analyses as reported

in the literature generally use some form of stress recovery,



post processing computer routines. These are never fully
described and it is nearly impossible to conclude if it was
done properly. In the particular case of full static solutions
supplemented by the dynamic response of a few modes it was
rossible that dynamic amplification factors were being applied
to stress transfer functions which had been computed on the
basis of the static deflection shape. This would clearly vield
inaccurate results because the stresses depend on higher deri-
vatives of the deflected shape. The mode shape of the lowest
bending mode may appear very close to the static deflection
shape, but the higher derivatives may be substantially different.
Some additional work in this area seems justified.

For the example problems considered here the issue of
which finite element procedure to use is avoided. This is
possible because, for a simple cylinder, the quasi-static and
dynamic contributions to the stress at the base of the cylinder
may be estimated directly without the use of finite element
programs. The same stress computation procedure is used through-
out the sensitivity studies described here. ©Natural frequency,
model damping, and wave spreading are the primary variables in
this study. Resulting relative variations in computed fatigue
life will not be particularly sensitive to the stress computation
procedure.

THE FATIGUE ACCUMULATION MODEL

For the purpose of this study the assumed form of the
fatigue damage accumulation model is that used by Crandall and
Mark [2] when the stress history is assumed to be described by
a narrow band random process. This formulation implicitly
assumes a Palgren-Miner rule for damage acculumation. Equation
1 describes the mean rate of accumulation of the fatigue damage
index for a location B in the structure due to a directionally

spread random sea with mean direction 80.



Vo 3 2 >/
F(8,0,) = —= (25,9 T (1+4b/2) (1)

F(e,eo) = the mean rate of accumulation of the fatigue
damage index at position g, due to a wave
field with nominal direction of propagation

6.«

csz = tﬁe mean sguare stress at position B.

v0+ = the average zero upcrossing rate of the
stress process in Hz,

r{) = the Gamma function.

b,c = constants cf the S-N fatigue curve of the

material as defined by Equation (2), where N is
the number of cycles to failure with a stress range S.

ns? = e (2)
This model, and the material constants b and ¢ are assumed
fixed. This leaves v$+ and g 2 as variables to be considered.

s
v * depends on the frequency content of the wave spectrum

as wegl as the wave amplitude to stress transfer function for
the structure. If the structure has no natural frequencies in
the region of significant wave force, then the response is gen-
erally guasi-static in nature and “o+ is governed primarily by
the frequency content of the wave spectrum. When the stress

is primarily due to the response at a natural frequency, then
Vék is strongly dependent on the natural frequency which is
governed by the structural specifications.

In both of the cases the response is approximately narrow
band and the use of Equation (1) is appropriate. In the case
that the response spectrum is composed of significant quasi-
static and dynamic response peaks then it may be necessary to
modify the above equation. One such modification is the use of
a final correction factor, wuch as proposed by Wirsching [3],
in which rain flow cycle counting procedures are used to obtain
a correction factor to account for broad band stress spectra.

The use of such a correction factor is assumed to be wvalid here.



The task is then to investigate the sensitivity of the
mean square stress 052 and the average zero upcrossing fre-
+ s .
guency, vo , to variations in structural natural frequency,

modal damping, and wave spreading.

QUASI-STATIC AND DYNAMIC CONTRIBUTIONS TO MEAN SQUARE STRESS

In this study, it is assumed that mean sguare stress at a
point in a structure may be approximated by the sum of a quasi-
static component due to low frequency waves and a dynamic com=~
ponent due to the damping controlled response of natural modes
of the structure excited by the higher freguency components
of the wave spectrum. This is comparable to the procedure of
supplementing a full static finite element solution with the
dynamic contributions of the significantly responding natural
modes.

In this analysis the response is assumed to be gquasi-
static up to within one half power bandwidth of the lowest
natural frequency of the structure. Furthermore, the lowest
natural frequency is not allowed to be less than the peak fre-
gquency of the wave spectrum. The computation of the mean sgquare
stress is then accomplished by summing the mean square static
component with the dynamic contrikbutions.

The guasi-static component of stress at a specific loca-
tion is assumed uncorrelated with the dynamic components. How-
ever, for closely spaced natural frequencies, correlation be-
tween the stress components of two or more natural modes may
have to be considered. The partitioning of static and dynamic
contributions to the total stress is illustrated in Figure 1,

a stress spectrum with a quasi-static stiffness controlled peak
and cone damping controlled resonant peak.

The quasi-static mean sguare stress, O 2, is obtained by
integrating the stress spectrum up to &, = qw (1-2%) where

1

Wy is the lowest natural frequency and £ is the modal damping



ratio of that mode.

cq2 = /s, (@) du (3)

where Ss(w) is the stress spectrum.

2

For a complex structure Uq could be computed from a

static finite element model. For the vertical cylinder example
evaluated in this report qu is computed from a simple static
model of a cylinder loaded by a force computed using the Morison
equation.

The calculation of the static mean sguare stress may include
the influence of drag forces, in which an equivalent lineariza-
tion procedure has been used or a more accurate non-linear wave
force spectrum has been computed using the results of Dunwoody
(4]. Drag forces are negligible in the examples of this report.

This static approximation does neglect any dynamic ampli-
fication at frequencies below the cut off.

The average zero upcrossing frequency of the static com-
ponent of stress is computed from the zero and second order
moments of the truncated spectrum

(4]
C
w2=J'sz(w)dw w
g P s 1 c 5

" = 3 [ w S5, (W) du (4)
c g o}

[ s, (w) dw

Q

o 2 and w 2 for the example calculations are assured to be
provided for the purposes of the remaining discussions. How=-
ever, the effect of wave spreading on the gquasi-static and
dynamic components of the mean square stress are accounted for

analytically later in this report.



The dynamic or damping controlled contributions to the
mean sguare stress are computed separately. The area under the
stress spectrum as shown in Figure 1 for wl(l—ZE) L w < ml(l+2§)
is defined as the mean square dynamic response for mode 1.

There may be more than one mode which has significant dy-
namic response. The dynamic contribution of each must be
separately evaluated. In this report the mean sguare dynamic
response of all significant modes will be computed using tech-
niques described by Vandiver [5]. In this reference it is shown

that the mean square dynamic response of an individual mode x
is given by:

3

o2 = —--—--.——5—2‘5 :lx zwg S, (u,) ——E; Ez"; (5)
X Ux X
where

Gi mean square dynamic deflection of the xth normal mode
m, o: modal mass
W, natural frequency

Sn(wx): wave amplitude spectrum evaluated at W,
Per density of water
g : acceleration of gravity

R_(w_ )

R;(wx): ratio of the radiation (wave making) to total modal

damping evaluated at W

This result is wvalid for lightly damped modes excited by
linear wave forces. The constant Cx depends on structural
geometry and wave spreading and will be evaluated in detail
later. Through knowledge of the mode shape and structural de-

tails the mean square stress at a specific loation can be re-

2
lated to Gx .

If there is more than one mode contributing in a signifi-



cant way to the dynamic response then the stress at any specific
location in the structure will depend upon the superposition

of stresses from each mode. If the natural frequencies of each
responding mode are different, (at least so that their damping
controlled peaks as defined in Figure 1 do not overlap), then
the stresses contributed by each may be assumed to be uncor-
related and the total mean square stress will be the sum of the
mean square stresses due to each individual mode. This is a
consequence of the fact that waves and hence wave forces of
different frequencies are uncorrelated. If two peaks overlap
then the correlation between stress components must be included.

The mean zero upcrossing frequency for mode x is simply
wx/ZW. The mean upcrossing frequency for the combined static
and dynamic stress history may be computed as a weighted sum of
the individual contributions as shown below for a system with

a single dynamic component.

vt (H)) =

2 2 2 2
1 wch + wlodl ]
o z 2T

(6
oqz + Udlz | )

where W 2 and Uq2 reflect the static response and

mlz and Gdlz are the natural fregquency and mean square stress

contributed by mode 1.

THE EFFECT OF NATURAL FREQUENCY ON FATIGUE

If the fundamental flexural natural weriod of a steel
jacket structure was taken to be 3.5 seconds for the purpose of
fatigue life computation, and the as-installed natural period
turned out to be 4.0 seconds, how much would the estimated
fatigue life be reduced? An estimate may be obtained in the
following way. Recalling equation 1 and adding Yy, a Wirsching

type correction factor to account for broadkbanded spectral
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effects yields

v o+
b/2
F=y 2 (2007 /

T (1 + b/2). (7)
Assuming that wave spreading effects have been taken into con-
sideration, then a wvariation in the estimated natural period

of a mode will influence three parameters in the above eguation:

AT vo+ and o 2. o 2 will change because its dynamic component

will change. ghis iz because the wave spectrum is a rapidly
changing function of frequency, and as can be seen in Equation
5, the mean square dynamic response is proportional to the wave
spectrum divided by the natural frequency raised to the fifth
power. Vv 0+ will change as can be seen in Equation 6 because
it depends on the natural frequency as well as on the mean
square dynamic stress; y may change because the broadbandedness
of the stress spectrum may change. If a prime notation is

used to denote the result with a shifted natural frequency, then
the ratio of fatigue damage between two cases may be expressed
as:

] vV +'\ g 2' b/2
F' _ (1_)( o ( s\ (8)
F Y vt a2 /

The two extreme cases are simple to evaluate. The first is

when the estimated and actual natural periods are so short that
the dynamic component of csz is negligikle. This is true for
most structures when the lowest natural freguency corresponds
to a period of 2.5 seconds or less. 1In this case F'/F = 1.0.
dlz' the dynamic
component of stress of a single natural mode is assumed to be

The more interesting extreme is when o

much larger than the static component. This may not be physi-
cally realizeable, but provides a useful upper bound on the
variation of fatigue with natural frequency. One way to esti-

mate this is through the ratio of fatigue damage at two differ-
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ent natural frequencies.

E e Y - () )

Because the process is narrow banded the Wirsching cor-

rectionfactor reduces to 1.0 for both cases, and the upcrossing
frequency reduces to the natural frequency divided by 2w.

\)0 = E‘TT {10)

The only remaining step is to evaluate the frequency de-
pendence of Odlz' the mean square stress from dynamic response
of the mode. This is guite easy and may be estimated directly
from Equation 5, with one minor modification. In normal mode
formulations the product of the modal mass and the natural
frequency squared is simply the modal stiffness.

M,w = K (11)

If the natural frequency varies because the modal stiff-
ness is different than expected then the effect on mean square
stress should be evaluated using Equation 5. However, if the
modal mass varies, then the effect on mean sguare stress should
be evaluated after substituting Eguation 11 into Egquation 5,
as follows.

3
) > _ 2.5Clpwg s (0.) Rr(wl) (12)
1 X 3 n 1l R_(w,)
lwl T 1

If it is assumed for small variations in natural frequency
that the ratio between mean sgquare modal deflection and mean

square stress remains constant then the frequency dependence
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of the mean square stress i1s the same as that for mean sqguare
deflection as given in Egquations (5) or (12). This is essen-
tially an assumption that the mode shape does not change, which
1s not true, but is adequate here for the purpose of a simple
check on sensitivity to changes in natural frequency. There-

fore stress and deflection may be related as shown.
041 = A0 {13)

If there is any substantial wave spreading, such as cosine
sguared, then Cl is only weakly dependent on frequency and is
assumed not to vary. Similarly the ratio of radiation to total
damping is assumed constant in comparison to other sources of
variation. Lumping all constant guantities into Az in Equation
{(13), two expressions for Gdlz result, depending on whether the
source of change was mass or stiffness.

2 5_fuoy) .
2_ A~ n*’1l ( stlffness) (14)
a1 T ™ 5 changes
1 W,
G .. 2= éi Eﬂifil (ass (15)
di Kl 3 changes
“1

It remains only to evaluate the fregquency dependence of the
wave spectrum. ]

Krogstad [6] has presented evidence that wind driven wave
spectra may be modeled at frequencies higher than the frequency

of the peak in the wave spectrum as given below:

3 -4.6 2

) (F) = 1.62 % 10 f m--sec (16)

max
This is the upper bound curve for spectral values, but possesses
the frequency dependence characteristic of the high frequency

gside of wind driven wave spectra.
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Expressed as a function of ®© Equation (16 ) takes the form

s W) = %T- x 1.62 x 1073 (X

(17)
max

Assuming all of the constants in this spectrum are absorbed into

the constant A2 in equations 14 or 15 yields

2_ A" 1 stiffness
941 My o 9.6 changes (18)
1
2_ éi 1 mass
ar ~ K; o 7.6 changes (19)
1

Substituting each of these expressions into Equation (9) and
setting the slope, b, of the S-N curve equal to 4.1 for welded
tubular joints yields

Y w. '\ —14.6
F _ (L
F Wy {mass changes) (20)
v -18.7
F' ¥1 .
— = (-———) (stiffness changes) (21}
F ml

Therefore, if the natural frequency is 10% greater than
predicted, then the fatigue life will be increased by a factor
of 4.02 or 5.94 depending on the source of the error.

These examples were upper bound situations in which the
quasi-static contributions to mean square stress were assumed
small. In most cases of practical interest both contributions
will be of importance and the sensitivity to natural frequency
variation will not be so extreme.



14

THE EFFECT OF DAMPING ON FATIGUE

A variation in the estimated damping of a normal mode in-
fluences the mean square dynamic contribution to the total
stress directly, and the average upcrossing frequency indirectly,
because of its dependence on the mean square dynamic stress.

To place an upper bound on the significance of an error in
the prediction of modal damping an analysis similar to the pre-
vious section may be performed. If only the dynamic component
of a single mode 1s presumed to contribute to the total mean
sgquare stress, then proceeding as before leads immediately to

the following conclusion:

' 2
F' J(Rr(“’l)) (Er_(_fiﬁ)} o/ (22)
F |\Rp(w) Ry (wg)

All terms involving frequency directly cancel out because the
natural frequency does not change in the example.

The method of computing mean square dynamic stress used in
this analysis is somewhat unconventional and not widely used
in the industry. Therefore, to reflect conventional practice
the same upper bound on the sensitivity of fatigue damage cal-
culations to variations in estimated total damping may be ex-

pressed as follows:

Pl (gT) b/2 (23)
P
ET

1
when E£q and ET are the estimated and actual total modal damping

ratios, which are commonly estimated in the range from 1% to
5%.
It is the position of the author that the uncertainty in
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estimating the ratio of the radiation to total damping is much
less than the uncertainty in estimating the total modal damping
itself. Furthermore the use of Eguation (12) leads to estimates
of mean square dynamic stress which are bounded because the

ratio of radiation to total damping is at most 1.0. No such
upper bound exists when conventional methods of computing dynamic
response are used.

Furthermore, conventional methods of estimating response
require independent estimates of the modal wave force spectrum
and the total modal damping. This ignores the fact that the
modal radiation damping and the linear modal wave force spectrum
are proportional to one another [5]. Thus two sources of un-
certainty enter the calculations where only one exists.

For the sake of example, suppose in either formulation the
damping is underestimated by a factor of 2.0. This will lead
to an overestimate of the fatigue life by a factor of

(2)%72 = 4.14 for b = 4.1 (24)
for the extreme case of no static contribution to the stress.

THE EFFECT OF WAVE SPREADING ON FATIGUE ESTIMATES

An accurate description of the wave spectrum must model
the directional distribution of the wave energy as well as its
distribution in frequency. The directional wave amplitude
spectrum may be defined as Sn(m,e), where w and 6 are the wave
frequency and incidence angle respectively. The directional
spectrum and the point spectrum are reiated as follows:

2T
Sn(w) = é Sn(w,e) de (25)
For linear wave forces and structures which respond in a

linear fashion, it is possible to define a wave amplitude to
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stress amplitude transfer function for any location in the
structure, as a function of wave frequency and incidence angle.
This transfer function is defined here as Hns(w,e). The di-

rectional stress spectrum is then given by
2
S (w,8) = |Hns(“'9)1 sn(w,e) . (26)
The dependence on 8 may be eliminated by integration:

27
S.(w) = f 2
s OlHns(w,8)| s, (w,8) de (27)

The most common limiting form is the case of unidirectional

waves from an angle 90. In this case,

S (w,8) = 8§ (w) 5(6-8) (28)

and

2
s = B w8,)1" 8 (w) . (29)

It is common practice in the offshore industry to assume
that the wave spectrum is unidirectional. The stress spectrum
at each point of interest is then computed for a discrete
number of directions, varying from 1 to 16.

The annual stress history is then built up by weighting
the discrete components on the basis of climate data. Such an
approach generally overestimates the stress spectra and there-
fore underestimates the fatigue life of the structure.

For the purpose of comparison, the other limiting form of
the directional wave 5péctrum is the case of totally diffuse
seas, in which waves are equally probable from all directions.

In this case,

S _(w) (30)

_ 1
Sn(w,e) = =7 5
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and 20
s (w) = S (w == f H (w08 ds =
5 n 27 5 ns' !
- 2
= S (w) < [Hns(w,8)| g . (31)

The resulting stress spectrum is simply the product of the
point wave amplitude spectrum and the mean sqguare value of the
stress transfer function with respect to incidence angle.

For linear wave forces,

Iﬁnstw,e)] = [H _(w, 6+m)| (32)

ns
and therefore it is only necessary that the waves be uniformly
distributed over w radians to achieve the result of Equation
(31) . Structural symmetry may reduce still further the total
angle over which the wave spectrum must be spread to achieve
the same conclusioon. It is the position of the author that

a realistic amount of spreading is sufficient in many cases to
achieve the result of Equation (31}). One such case is the ex-
ample of the heave response of a tension leg platform in seas
described by a cosine squared spreading function as presented
in Reference [5]. The results for a single vertical cylinder
are presented in this report.

If for a given structure it is found that the results of
Equation (31) apply, then the fatigue life at any specific
point becomes insensitive to annual variations in the mean di-
rection of the sea, and depends only on the point wave spectra.

Wave spreading, structural natural freguencies, and modal
damping ratios have been shown to be important parameters in
the estimation of stress spectra and hence the mean sguare val-
ues of stress.

The application of the general results derived in this

paper up to this point are best illustrated by an example cal-
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culation. The case of a single cantilevered vertical cylinder
is presented in the next section.

THE EFFECT OF WAVE SPREADING ON THE FATIGUE OF A VERTICAL CYLINDER

The quantitative variation in estimated fatique life,
which results from variation in natural frequencies, damping or
wave spreading may be clearly demonstrated with this simple
structural model. Many of the calculations may be done in closed
mathematical form, or obtained by simple numerical models.

Such a complete analysis may be helpful in establishing a meth-
odology which may be followed in the analysis of more complex
structures. Furthermore, quantitative results obtained here
will indicate the qualitative results to be expected in more
complex structures.

The model structure is shown in Figure 2. It is a single,
vertical cylinder with a concentrated mass, which for mathema-
tical simplicity is located at the water line. The size of the
concentrated mass is varied to adjust the natural periods of
the lowest bending modes. The structure has a diameter, D,

a wall thickness, t, and a water depth and cylinder length, h.
For the purpose of computing the natural freguencies and modal
mass the structure is assumed to have a uniform added mass co-
efficient of 1.0. That is, the fluid added mass is equal to
the displaced volume. The x and y coordinates are used to de-
scribe the horizontal plane. The z coordinate is positive up
from the bottom. Hence the water line is at z = +h. The mode
shape of the lowest bending mode is defined as y(z).

In an earlier section a linear transfer function between
wave amplitude and stress was defined. For the vertical cylinder
that transfer function takes on a simple form for the principal
normal stress found at the base of the cylinder at an angle B

measured from the x axis.
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Hig {w,6,8) = Hns (w) cos (6-8) (33)
where Hns(w) is the wave amplitude to maximum principal stress
transfer function at the base of the cylinder at the angle g=34
The coordinates 8 and 8 are defined in Figure 3.

The cos(B-8) accounts for the variation of stress around
the base of the cylinder for any location designated by the
angle 3, which may differ from the wave incidence angle §. The
stress spectrum at B8 is given by

s (w,8,8) = IHns(“)| cos” (6-8) 8 (w/8) (34)

Assuming that the wave spectrum is separable into the product

of the point spectrum and a spreading function as follows,
sn(w,e) = sn(w) D(8) (35)
then the stress spectrum becomes
S (w,8,8) = |H _(@)|%S_(w) cos® (6-8) D(8) (36)
s ! ns n *

If we let 8§ = 8 and consider the case of unidirectional waves
from 6= 0, then we find that

_ 2
Sg{w,0,0) = |Hns(w)l 5, (w . (37)

This quantity is the maximum stress spectrum at the base due to
unidirectional waves.

Equation (36) may be integrated over fregquency and angle
to obtain the mean square stress for situations with a more
realistic amount of spreading and for various locations 8.

This 1s expressed below:

27 5
Y [ cos”(8-R) D(8) ds (38)
o}

2 _ 2 2
Os (38) = (Oqo t %50
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where
2 ml(l-ZE) ,
qu = df Sn(w)|Hns(w)! dw (39)
2 ml(?+2£) ] |2
g, = s (w) jH, _(w)| dw (40)
do w, (1-2E) n ns
1
2 2
where oqo and 040 &are the maximum static and dynamic mean

square stress components due to unidirectional random waves.

The static component , 0;2, may be computed by a simple
computer program. The program computes the overturning moment
on a stationary cylinder due to unidirectional random waves and
then uses the simple relationship between bending moment and

stress for slender beams.

2 Ofn p?
a = (41)
O
q 4I2

where Oi is the mean sguare static moment and 2I/D is the sec-
tion modulus of the cylinder. The moment is computed using the
distributed wave forces as predicted by Morison's equation.

The dynamic component, 05;, of the maximum mean square stress
may be estimated by considering the modal dynamic response
predicted in Egquation (5). First it is necessary to discuss
briefly the behavior of a vibrating cylinder.

Solution of the eigenvalue problem reveals that the two
lowest vibration modes have the same natural frequency and mode
shape, but vibrate in planes that are orthogonal to one another.
The orientation of these planes is not unique and may be de-
fined to simplify solution of the problem. In this example they
are assumed to correspond to the x and y axes, and are desig-
nated x and y by subscripts. Only these two lowest bending



2l

modes are considered to contribute significantly to the dynamic
2

%o

is the dynamic contribution to the total mean square stress for

regsponse. The response of the higher modes is ignored.

the case of unidirectional waves and 8 = eo, the angle of in-

cidence of the waves. 02 must be proportional to the mean

square modal deflection ggven by Egquation (5) for the same
condition of spreading. Furthermore, in the case of unidirec-
tional waves incident on the structure at 6 = 0, the only de-
flections will be in the x direction. The first bending mode
in the x direction contributes all of the response. It remains
to calculate the undetermined constant Cx. From Reference [5]

Cx is given as

27 2
/8 (w,8)|T_(w,8)]%ds
O n X
Cx = 1 2T 5 (42)
S, (w) 5= 7 |rx(w,e)| de
o
where [Tx(w,e)| is the modal wave force per unit wave amplitude

for mode x and may in this case be expressed as separate func-

tions of § and w
|Fx(w,9)| = |I'(w)coss§| (43)
Assuming the directional wave spectrum is as given in Equation

(35), and using the result of Eguation (43), Cx reduces to the
following simple expression:

2
¢, = 2 J cos®s D(8)de (44)
o
Similarly,
T (w,8)| = |[I'(w) sin6] (45)

Y
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and 2T
C. = 2 J sin®s D(s) 48 (46)
Y o
For the case of unidirectional waves traveling in the direction
8 = 0, D(8) becomes

D(8) = d(8) (47)
and

Ck = 2.0

Cy = 0 (48)

It follows from Equation (5) that the mean square displacement

response o 2 is given by

X0
3
s % = > S (w.) Rr (O] (49)
X0 wag n X RTiwxj

For each mode shape the stress and displacement are linearly
related. Therefore a constant B2 must exist which may be used
to relate the mean square displacement due to unidirectional
waves to the mean sgquare stress as shown.

o = B2 (50)

and may be substituted into Equation (38) to yield

21
c?s = (quo + Bzoxzo) 7 D(8) cosZ(8-8) a8 (51)
C

The effect of spreading and of stress point location angle on
the total mean square stress are both contained in the inte-
gral. The above equation is now evaluated for three different
spreading models.

Case 1. D(8) = 1/2m , omnidirectional spreading. After
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integrating

02 = l ((52 +8202) (52)

This spreading is the most extreme and reduces the mean sguare
stress at any angle # to 1/2 that for B8 = 0 and unidirectional
waves at 8 = 0.

Case 2. D(8) = 2 cos’(6-6) (53)

This is the so-called cosine squared spreading function.
Arbitrarily requiring that the mean angle of incidence % egquals

zero, and evaluating the integral yields

2 () = [o?

2 2 2 .2
S go + B cx01[3/4 cos“R + 1/4 sin”"g] (54)

For the case that 8 = 0, cosine squared spreading reduces the

total mean square stress to 75% of that in unidirectional waves.

Case 3. D(6-8.) = V1-e2 (55)
27 {l-e cos(e—eo))

In polar coordinates, D(S-GO) describes a family of ellipses
based on the eccentricity parameter e. One of the focii of the
ellipse lies on the origin of the coordinate system and the
other focus lies alcong the direction eo. The eccentricity para-
meter can take on any value between zero and one. 2Zero cor-
responds to a completely diffuse sea with equal amplitudes of
waves propagating in all directions. One corresponds to a uni-
directional sea propagating in the direction 9, The spreading
function, D(B-eo), is suitably normalized so that the point wave
amplitude spectrum, computed by integrating the directional
spectrum over all angles, equals the original point spectrum. This
angular spreading function has been chosen over other possibilities
because the amount of spreading is a smooth function of a single
parameter. The parameter, e, can be used as the measure of
spreading in the computation of fatigue resistance as a func-

tion of angular spread of the directional wave spectrum. Fig-
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ure 4 shows the function D(8) for various values of the para-
meter, e.

Again the problem is simplified if we require the mean angle
of incidence 8, to coincide with the x axis. The integral over

angle in Eguation (51) becomes

27 —
f COSZ(G-B) /l-ez das (56)
o 27(l-e cos8)

_ 2 .2

= cos“B & + sin“g(l - G) {57)
2m 2

where G = cos?9/1-e® as (58)

o 2T(l-e cosB)

The values for G corresponding to values of e ranging from 0
to 1.0 are shown in Table 1. For the particular case of
B = GO = 0 then

o (0) = [o + BYqg,.1G {59}

Thus, e = .95 yields a value of G = .76 which is essentially
the same as cosine sguared spreading in the previous example.
It is useful to investigate how spreading affects the mean
rate of fatigue damage accumulation, F, as defined in Equation
(1). This shall be done here by computing the ratio of F for
an arbitrary value of spreading, e, to that of F when the waves
are unidirectional (e = 1.0).
O;Z(S) for unidirectional waves is
2 2

oo (B) = [o_, + B

2 2
s go ®xo ] cos™R (60)

Inserting this expression into the fatigue damage equation and
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doing the same with the results obtained by applying Equations
(51), (55), (56), (57), and (58) and taking the ratio yields:

2 .2 b/2
F(e,3) _ [cos 8 G+ sin B(l—G)} (61)

F(1,g) cos” B

For the case of B = 0 this reduces to Gb/z.

Gb/2

For b = 4.1,

is also tabluated in Table 1 for various values of e.
For cosine squared spreading and 8 = 0, this ratio equals
0.55 and for complete spreading it is 0.24, as compared to 1.0
for the unidirectional case. In other words, for 8 = 0, cosine
squared spreading reduces the fatigue damage to approximately

one-half that for unidirectional waves.

TABLE 1

Spreading parameter e versus G and Gb/2 for b/2 = 2.05

e G Gb/2 Nature of wave spreading
0 0.5 .24 omnidirectional

.5 0.53 .27

.7 0.58 .33

.8 0.62 .38

.85 0.65 .41

.9 0.69 .47

.95 0.76 .57 approx. cosine squared
.99 0.87 .75

1.0 1.0 1.0 unidirectional
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THE NATURAL FREQUENCIES AND MODE SHAPES OF THE CYLINDER

The first natural frequency and mode shape for a beam free

at one end and fixed at the other are given by Biggs [7]:

_ 3.52 L fEI
ml = ? Y (62)

where: E = Young's modulus

I = moment of inertia of the cross section
m = mass per unit length of the beam

) length of the beam

The mode shape is

wl(z) = A [—(C?S ag + C?Sh ag)(sinh az - sin az) +
L sin a% + sinh at
+ cosh az - cos azJ {63)
where afl = 1.875.

A is an arbitrary constant which is adjusted in this example
to make the value of the mode shape at the tip (z = %) equal
to 1.90. For wl(z = %) = 1.0, A = 0.50.

The bending moment per unit tip deflection in this mode

shape may be computed from the moment curvature relation.

2
Miz) _ dylz) - azA -.734(sinh az + sin az) +
EI dz%
+ cosh az + cos az} (64)
The maximum bending moment occurs at the vase, z = 0.
2
M) _ 5% = 2(1'875>A (65)
EI b

For a thin-walled tube the stress due to bending at a

location on the circumference identified by the angle £, due
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to deflections of the tip in the direction designated 6,

is given by

sg,0,t) = YR oo (6-8) qre) (66)
2
- 2A<l-g75} E R cos (8-8) ql(t) (67)

where R is the radius of the cylinder and g(t) is the time
history of the tip deflections due to the response of the
lowest mode. g(t) in this example will only be computed for
the damping controlled response near the natural frequency.
The quasi-static contributions to response are calculated
separately. The mean square stress due to first mode vilkra-
tion along the x axis in response to unidirectional random

waves directed along the same axis is

2 >
0&2(3) = c;; {2A<1’375> E R cosR]” (68)

For £ = 0 this equation is of the form specified in Equation
(50).

S40 = B 9o {50)
2 2
B2 = izAG;-jlf’-\, ERIZ = 3.52(571‘) (69)
/ L
U;i is the mean square dynamic deflection of the tip com-
puted using LEguation (49). The only precaution in the use of

the equation is that modal gquantities such as the modal mass
MX must have been computed using the same mode shape that was
specified here. 1In this report the normalization is such
that y{(z = 2) = 1.0.

For a hollow steel cylinder immersed in water and an assumed
added mass coefficient of 1.0, the mass per unit length of the

cylinder for the purpose of calculating the natural fregquency is
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2
il

pSZWRt + szpw (dry interior) (70)

3
|

pSZWRt + Zszpw (flooded interior) (71}

The modal mass MX for the lowest mode is:

h 2
Mx = S p({z) " m dz
o)

e

.25 hm (72)

The natural frequencv of the lowest mode from Equation (62)
\%@

iS: W1 3

. o 3.52 (E)/Z/ Rt (73)
- —2’" - !

X h Pi \DS/DW 2Rt + TRZ

where ps/pw is the specific gravity of steel.

The preceeding equation is for a dry interior. TFor a
flooded cylinder the WRZ term in the preceeding equation must
be doubled.

If one assumes that the mode shape does not change then

an approximate expression for the natural frequency of a cylin-

der with a tip mass is given by

1 M 1/2
W, = = (74)
x = Yy \M M
@] pd

where
w, = natural frequency without a tip mass
M = modal mass from Equation (72) with or without a
x flooded interior, as appropriate
MO = tip mass

Therefore, an approximate modal mass including the tip weight
is

MX = M_+ MO = .25hm + Mo (75)
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THE FATIGUE LIFE OF A SINGLE CYLINDER: NUMERICAL EXAMPLES

Two specific numerical examples are evaluated below:

Example 1. Dry interior, no tip mass.
h = 70 m
R = 2.1 m
t = 07 m
ps/pw = 7.5 5
Py = 1000 kg/m
1/2 4
(E/py) = 1.42 x 10° m/s
W = 3.19 rad/s
Ty = Zﬁ/mx = 41.97 s
m = 2,08 x 10" kg/m
M = .25hm = 3.64 x 10° kg
2 2
B2 = 3.52 28° = 2,62 x 1016 57/4n2
2 m :
2
2 _ 2_2  _ 16 _2 /nt
Y40 = B Yo = 2.62 x 10 9o <;§>

where dgi is the mean square deflection from Eguation

{49) in m2.

Example 2. Flooded cylinder with a tip mass. Same values

as before except as noted.

3.46 x 10% xg/m

m =
M = .25mm + M = 6.06 x 10° + M
ple o o
M = 5.38 x 10°
© 6
MX = 1.14 x 10" kg
Ty = 3.5 s
W, = 1.8 rad/sec

To complete both examples an estimate of o;; is required
from Equation (49). An upper bound on the value of the point

wave spectrum at the natural frequency may be easily obtained



from Krogstad's formula
Equation (17).

Sn(m) /21 =x

30

for the equilibrium limit given in

3

1.62 x 10 (17)

Evaluating this at the two natural frequencies found

above

i

3.19)

1.8)

Placing these wvalues in

3 2.

5.8 x 10

2 _2
m

8.1 x 10 -5

Equation (49) yields

for w = 3.19
c2 = 2.28 x 10 % nm?
HO 2 2
2 _ 2_2 12 /s nt _ nt
ol = 8%2 = 5.95x 10 (-7) = 5.95(—59
m TIm
_ 6 sntyN _ . nt)
04 = 2-44 x 10 —7) = 2.44(-—7
n T
for w = 1.8
c2 = 1.77 x 1072 n®
X0
2 2
2 _ 14 /nt _ 2 ( nt
and  of = 4.63 x 10 (-7) = 4.63 x 10 (——§>
m mm
- 7 52) _ nt
040 2.15 x 10 ( =)= 21.3 (——7
m mm

As a simple demonstration we may take the worst case

example of Rr(wx)/Rt(wx)

1.0 and no directional spreading.

Assuming for the purpose of demonstration only that there is

nc quasi-static contribution to the stress, a fatigue life

estimate for the two cases may be achieved using Equation (1).
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+
Yo ,.3_2 . P/2
F = —— (270" I'(l+b/2)
c ]
]
+ X
where v = T
b = 4.1
log10 c = 13.57

where b and ¢ are taken from DnV guidelines for tubular

joints and are based on stress range in nt/mmz.
2 _ 2
9% = %30
['{l+b/2) = 2.0957
For the case w, = 3.19 rad/s, v6+ = ,508 Hz :
_ -1 _
F = 7.87 x 10 = .0025/vyear
1/F = 400 years fatigue life
For the case mx = 1.8 rad/s
F = 3.34 x 10" /sec = 10.54/year

1/F = 0.095 years fatigue life

This result is consistent with Equation (20) which reflects the
change in fatigue damage due to a change in natural frequency
which results from a change in structural mass, not stiffness.
By including the influence of a realistic level of damping
and spreading, a revised estimate of this overly conservative
fatigue life estimate may be obtained. From Equation (54), it

can be seen that cosine squared spreadinag reduces the mean

square dynamic stress at B = 0 to 3/4 of o;é From Equations
(49) and (50) it can be seen that a value of Rr/Rt = 1/2

reduces Gg by an additional factor of 1/2. This wvalue for

damping is found in the following section. By including these
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effects the revised estimate is

= - 2 2
g =0 = (3/4)(1/2)Odo = 3/80do.

Using this walue of stress in Equation (1)} increases the
fatigue life by a factor of 7.47.

For w, = 3.19 rad s

1/ = 7.47 x 400 = 2988 years.
For w, = 1.8 rad/sec
1/F = 7.47 x .095 = .71 years.

THE DAMPING OF A VERTICAL CYLINDER

The mean square dynamic stress is proportional to the
ratio of radiation to total damping. This may be expressed in
terms of the actual meodal damping coefficients or in terms

of their equivalent damping ratios as shown.

R g ) e
Rplw,) Ep@,) ;

The total modal damping is made up of numerous components.
They include structural hysteretic, soils, hydrodynamic vis-
cous, and radiation (wave making) damping. Non-linear effects
in general will require that the soils and viscous components
be adjusted for each sea state. At any given sea state it is
assumed that an equivalent linear damping may be found for
each component. In the absence of accurate information on
the various components the upper bound value of 1.0 may be
used for the ratio.

For the vertical cylinder vibrating in the first mode, it

is possible to estimate the radiation, viscous, and structural
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hysteretic components.

The linear radiation damping of the lowest flexural mode
of a cylinder may be computed by solving the linear potential
flow radiation problem. The solution may be found in a report
by Petrauskas [8] and is given below for the case of deepwater

waves.
Pl (ka) T2
where a = R the radius
k = wxz /g the wave number

Pl(ka) is a function defined below and plotted in Figure 5.

P, (ka) = 2/{1Tka[Ji(ka)2 + v, (ka) 21} (78)

where: Jl and Yy, are Bessel functions of the first and

second kind. The ' indicates the first derivative.
T 3
For ka < 1/2 Pl(ka) 2 E(ka)
ka > 2 Pl(ka) = 1.0

Recognizing that

R

o )
wXX

£. may be calculated for the two specific example problems.

=
O
it
£

[l

3.19 rad/s, Er = .017

.018

w, o= 1.8 rad/s, Er

The viscous hydrodynamic damping coefficient per unit length

has been shown by Dunwoody to be approximately given by
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- ~/8 5.
RV = l/ZDwDCD T s (80)

where D is the cylinder diameter, C_. is the drag coefficient and

D
o, is the root mean square relative velocity. Because of the
attenuation of waves with depth, o is a function of z. The
modal damping coefficient for the first bending mode may be

calculated from the following:

h

R, = él/ZQNCDD@UI-_(z)w(z)Zdz (81)

Rvx can only be found by an iterative solution of the
equations of motion, because of the relative velocity term.
However, an approximate solution may be obtained by assuming
that the fluid velocities are much greater than the structural
velocities. In other words that Uu(z) = Géfz) where du(z) is
the root mean sgquare water particle velocity. Assuming airy
waves and an exponential decay of horizontal water particle
velocities with depth an approximate value of Ouz(z) may be

obtained.

o0

Guz(z) = fwzsn(w)
@]

e2X (2-h) 4 (82)

where k = wz/g.

Even this integral can be rather difficult to evaluate and
therefore to obtain a rough estimate for the examples here,
further simplifications were necessary. The first was to
assume that the exponential decay of the velocity spectrum is
governed by the frequency of waves corresponding to the peak of
the wave spectrum, wp. The second simplification was to assume
that for frequencies above the peak frequency of the wave spec-
trum, the spectrum may be approximated by the Krogstad equil-

ibrium formulation from Eguation (17).
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1.62x1073 / w\74:0 s
% (77,

for w >
“p

S (9)

for w«<
“p

With all of the above approximations 0u2 may be expressed

as:
2
2w
% -3 p (z-h)
2 2 1.62x10 £L>'4-6 (——7—~ )
T i w 2T (Zn e dw (83)
P
2¢ 2 D g 1.6
2 . ,.-3 (—E-(z-h (_E)
94 = 10 e 2 T (84)
va may be calculated by substituting 94 into Equation
{(8l) for o:- This was done for wp = .628 rad/s which corre-

sponds to waves with a 10 second period. After dividing by
ZwXMX to obtain the damping ratios the approximate results

were
for w, = 3.19 gv = ,004
Er = ,017
W = 1.8 E_ = ,002
x v
gr = .018

In both cases the viscous damping was rather small compared to
the radiation damping. This is to be expected in a problem for
which the inertial forces are large compared to the drag for-
ces. Just as the radiation damping is related to the inertial
component of the wave force spectrum, the viscous damping is
related to the drag component of the wave force spectrum. In

other words, when drag forces cannot be neglected, neither
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can the viscous element of the damping be neglected. When
inertia forces are dominant it is likely that the radiation
damping will be much larger than the viscous damping.

The soils damping, Es’ is very dependent on site condi-
tions, and no attempt is made to estimate it here. For the
sake of example, it will be specified as 1%.

The only remaining element is the structural hysteretic.
Based on evaluation of the average strain energy lost per
cycle of motion, the hysteretic losses in steel imply 0.25 to
0.5% damping (Eh = .0025 to .005).

For the two example structures the damping may be summarized:

For w = 3.19 For w = 1.8

p.4 xX

g, = .017 g, = -018

g, = -004 g, = -002

g, = .01 g, = .01

g, = .005 g, = .005

5r _ .017 Er L0188 _

= = ==L = .47 £ o= 28 = sl
T .036 T .035

The total damping in each case is on the order of 3.5%
and the ratio of radiation to total damping is approximately
0.5. If the soils damping is actaully only 0.5% instead of 1%,
then the total damping is reduced by 14%, but the ratio of
radiation to total damping increases by only 8%. The ratio
is less sensitive to errors in the individual components than

the total damping wvalue.

CONCLUSTIONS

By means of general formulations and a specific example,
the dependence of fatigue on the uncertainties related to
natural frequencies, damping ratios and wave spreading have

been demonstrated.
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Uncertainties related to the prediction of structural
natural frequencies are primarily related to the structural
idealizations or models used in the design process. The great-
est weakness is probably in the area of foundation modelling.
The behavior of soil under cyclic loading conditions remains
a rather uncertain field. Assumptions regarding soils stiff-
ness have dramatic impact on the estimation of structural na-
tural frequencies.

The uncertainties related to damping estimates have several
sources. One of the greatest is a general lack of accurate
estimates of damping on existing structures. This issue and
a method for obtaining improved measurements of damping on
existing structures are addressed by Campbell [9]. The second
reason for uncertainty is that direct estimation of individual
components of damping are rarely made, and the knowledge re-
quired for making such estimates is not widely available in
the industry. To understand the complete damping problem one
must understand the fluid mechanics, the soil mechanics, the
structural mechanics, and their interaction. A final source
of misuse of damping is that the relationships between exciting
forces and damping mechanisms are too frequently ignored.

In the literature one finds examples where viscous damping is
assumed negligibly small, but that drag forces could not be
neglected. Such assumptions are inconsistent and reflect a
lack of understanding regarding the relationship between hy-
drodynamic excitation and fluid damping mechanisms.

The significance of wave spreading has been recognized
for years. However, the principal weakness in accounting for
spreading in dynamic response problems lies with the lack of
knowledge of the extent of spreading in realistic sea condi-
tions. Until more accurate descriptions of the sea become
available, estimation of spreading for the purposes of dynamic

response calculation will remain rather uncertain.
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FIGURE 1. The Partitioning of Stress into Static
and Dynamic Components.
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FIGURE 2. Simple Cylindrical Cantiliver



FIGURE 3. Cross Section of Cylinder with
Coordinates.
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